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UNIFORM DECAY OF SOLUTIONS FOR
VISCOELASTIC PROBLEM WITH NONLINEAR
BOUNDARY DAMPING AND MEMORY TERM

JEONG JA BAE

ABSTRACT. We consider the existence of solutions of viscoelas-
tic degenerate problem of Kirchhoff type with nonlinear bound-
ary damping and memory term. Moreover,we consider the uniform
decay of the energy for the problem.

1. Introduction

Let €2 be a bounded domain in R™ with C? boundary T" := 09 such
that L =ToUTy, To NIy = 0 and Iy, I’y have positive measures. In
this paper, we are concerned with the following problem:

K(z,t)u”" — (1 4+ ||Vu||>)Au — Au' + /t h(t — 7)Au(t)dT =0
0
on Q = 2 x (0, 00),

u(z,0) = up(z), u'(z,0) =uy(z) onz €,
u=0 on X; =TI x(0,00),

(1.1)
ou o
1 Vull?)— + —
1+ IVt s + S
t ou o 1
— / h(t — T)EZ(T)dT +u' + a{t)(Ju'|Pu’ — u["u) =0
0
on X =T x (0,00),

where v denotes the unit outer normal vector pointing towards I'. I-rom

physical point of view, when 'y = @ and K = I, equation (1.1) with

Received June 4, 2003.
2000 Mathematics Subject Classification: 35L.70, 35L15, 656M60.
Key words and phrases: degenerate problem,Kirchhoff type, uniform decay, energy



38 Jeong Ja Bae

h = 0 has its roots in the model for the small amplitude vibrations of an
elastic string in which the dependence of the tension on the deformation
cannot be ignored [7], and equation (1.1) with A # 0 may be used to
describe the dynamics of an extensible string with fading memory.

When K = I, there exists many literature about viscoelastic prob-
lems, that is, the one with integral memory term, acting in the domain.
Among the numerous works in this direction, we can cite Rivera [4]. For
the blow-up properties of the solutions of wave equation with nonlinear
damping and source term acting in the domain, see Georgiev et al [3].
For the existence results for Kirchhoff type wave equation with 'y = ()
and h = 0, see Brito [1], Matsuyama [5] and Ikehata [6]. Author [8, 9
has studied the existence and uniform decay of solutions of Kirchhoff
type wave equations with A = 0 and nonlinear boundary damping and
nonlinear boundary source term.

On the other hand, Torrejon [10] has considered the global existence
of quasilinear wave equation with memory;

uge — M(||Val]*) Au — /0 h(t = )N (| Vu(r)|*) Au(r)dr = f

on @ =Q x[0,7],
u(z,0) = ug(z), u'(z,0)=ui(z) on z€Q,
u=0 on 90 x]0,T],

where h, M, N are real valued nondecreasing functions with M(-) >
N(-) > 0. Also, Cavalcanti et al [2] have studied the following degenerate
equation:
Ki(z,t)u" + Ko(z,t)u' —Au=0 on Q= x (0,00),
u(z,0) = uo(x), o(x,0)=ui(z) on =z e,
(12)  4=0 on %; =Ty x (0,00),
ou

5 v 4+ a(t)(|u')Pu’ — |u/"u) =0 on Xy =Tg x (0,00).

This kinds of problem is specially related to the study of transonic gas
dynamics. Cavalcanti [2] have considered the existence of strong solu-
tions and uniform decay of energy for the above problem (1.2), assuming
that K;(z,t) can vanish on @, in this case we call the equation is de-
generate.

In this paper, we will investigate the existence of solutions of viscoelas-
tic degenerate problem of Kirchhoff type (1.1) with nonlinear boundary
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damping and memory source term. Moreover, we will consider the uni-
form decay of the energy of the problem (1.1). To obtain the existence
of solutions. we use Faedo-Galerkin’s approximation, and also to show
the uniform stabilization we use the perturbed energy method.

2. Assumptions and main result

Throughout this paper we define

V={ue H®); u=0 on T}, (u,v)= /Qu(a;)v(:c)d:z:.

(e = [yt Jull = [ Jua)Pds and fullc = fulls

For simplicity we denote || - || 72(q) and || - |l and || - ||r, respec-
tively. In order to obtain the existence for regular solutions, we need
the following assumptions.
(A}) Let us consider ug € VN H2(Q) and u; € V verifying the com-
patibility conditions
Ug = Auo == Aul =0 on Pl,
Jug  Ouy

(1+ || Vuo? )—+"(9—+U1

+ a(0)(Jur|Puy — |ug|Tug) =0 on Ty.
(Ay) Let K, a be functions in W1>(0, oc), K, a > 0 such that
—mpaft) < (t) < ~m1a(t), K({t)>0, —K'(t)>6>0Vt>0.

(A3) Let the function h : — R* be a nonnegative and bounded
C?-function such that [=1- fo r)dr > 0 and for some &;,
i=1.2.3

—&1h(t) < A (t) € =&h(t) and 0 < A"(t) < &h(t) Y iE>0.

We note that the assumption (A4;) is needed to show the boundedness
of the norm of «”(0), and the assumption (Az) is used in degenerate
problem. Now we state our main result.

THEORE \I 2.1. Under assumptions (A;)-(As), we assume p > v and
0<5y.p< = ifn>3,ory, p>0ifn=1,2 Then problem (1.1) has
a unique .strong solution u : Q — R such that u € L>(0,0c; VN H?(Q)),
' € L=(0.0c: V), VRAu" € L>(0,00; L%()), u” € L?(0,oc; L%(R)).
Moreover, if p = ~ and m; > 2(y+2), then there exist positive constants
C and Co such that E(t) < C1E(0)exp(—Caet) t > 0.



40 Jeong Ja Bae

3. Proof of Theorem 2.1

In this section we are going to show the existence of solution for
problem (1.1). We represent by {w;}jen a basis in V N H?(Q) which
is orthonormal in L?()), by V,, the finite dimensional subspace of V
generated by the first m vectors. Next we define for each € > 0, K (t) =
K(t) + € and uem(t) = LT yejm(t)wy, where uenm(t) is the solution of
the following problem:

(3.1)
(Ke(t)uln (), w) + (1 + [[Viem (O)I*) (Vuem (1), Vo) + (Vaig,, (t), Vo)

+ (U (8, w)r + () ([t ()P (£), w)r,
= a(t)([tem (B) M uem (1), w)r,

t
= / h{t — r)(Vuem(r), Vw)dr for all w € V,,,
0

m

Uem (0) = upm = Z(uo, wj)w; — ug  strongly in VN H?*(R),
(3.2) =
Ul (0) = um = Z(u1,w]')Wj — uy strongly in 'V,
j=1

and (14| Vugm||?) 242 + 24 w46 (0) ([t [Pt m = [tom| tom) = 0
on I'y. Note that we can solve the system (3.1) by Picard’s iteration
method. In fact, the problem (3.1) has a unique solution on some interval
[0, T¢,,) depending on m. The extension of these solutions to the whole
interval [0,T), for all T' > 0, is a consequence of the first estimate which
we are going to prove below.

A priori estimate 1
Multiplying (3.1) by V., (t), summing over j, we obtain
(3.3)
d af(t) 1
GEn O+ 2 e 17 5,1 = SO0 D) + Il DR,
+ Vg (O + @)l (01575 1, + h(O)[Vetem ()11

= 20(0) e (O om0 O, + S e O,

n % /O Bt — 1) (Vatem (1), Vatem(£))dr
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/ R (t — 1Y (Vtem (1), Vuem (t))dr,

where Ey(t) = v/ Bel®ul ()12 + 51 Vtern (1) 12+ | Ve (1) . Note
that Holder S mequahty and Young’s inequality give us

20(t)(|trem ()] e (), e (£)) o
(34) < 20(0unO] 2, luin®) 2,
< Cr(ma®)uan (1735 5, + 10Ol 1712 r,-
Since p > v, LP*?(Ty) — LY*2(Ty) and therefore we can obtain
(35) M OI722 5, < Coln) +nlle O

Considering Schwarz’s inequality and taking the assumption (As) into
account, we deduce

/ B = 1) (Vatem (), Ve (£))dr
(36) < &) Vuom(®)] / Bt — 1)Vt (r) | dr

& L t
< S I Vuen @I + 5 1Al 2100 / Bt = )|Vt (7) | dr.

Combining the above inequalities and integrating it over (0,t), we have

(3.7)
a(t)

+2
En, (t)+_T§|| em :Yy+2 ro t / Il (s )I*ds

/ IVl ()]2ds + (1 — ) / ) e () 1242 1, s

+ / o ()12, ds
0

o(0) +2
S Em(o) + ?H Om”z—FQ,FO

+ [ o) (Catm) + Crlmlluon (325 )
—fj—— t 2 -7 Uern (T r
#5100 [ 19062 + [ At = )Tt (1), Tt )
1 1 o §—r 2dr
43Il [ [ bl =) V() Pards.
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Taking Fubini’s Theorem into account, we deduce

1 t s

bl oey [ [ s = )Gt (r) Prds
(3.8) | 0.0
< 51 00c) | IVt0n() P

Also, Schwarz’s inequality implies

/O B(t = 7) (Vo (1), Vitern (£) )l

—_~
w
=}

~—
A

< | Vatem(®)] / Bt = 1)Vt () 1

IA

1 t
VeI + 17l 10,00 1Bl Lo 0,00) | Ve (r)][*dr.
4 0

Combining the above inequalities (3.7)-(3.9), employing Gronwall’s lem-
ma we obtain the first estimate:

VRO O + [ Vtem (O + 0 tem O,
(310) 4+ / (o ()% + [Vt ()2 + et ()2,
1}

2
+ a(s) luem (815 42,0, )ds < L1,

where L; > 0 is a positive constant independent of m and t > 0.

A priori estimate 11

First of all, we are estimating u”,,(0) in the L?-norm. Considering
w=ul,(0) in (3.1), from the fact (1 + || Vttgm||2) 240 + 28m 4y, +
(0 )(|u1m|pu1m —|wom|Tuom) = 0 on 'y, we have

IVE0)uem (01 = (1 + | Vauom|I*) (Atom, 1/ (0)) + (Atiam, 1, (0))
< [+ 1 Vuom ) | Auom | + | Auam [}l (O)]]-

Since \/K.(0) > € > 0,
(3.11) [ (O] < Lo,

where Lo > 0 is a positive constant independent of m and t > 0.
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Now, getting the derivative of (3.1), multiplying the result by 'qu(t)
and summing over j, we have

(3.12)
1

Bun(®) + (0.l (OF) + [Vl ()] + il (D2,

)
+ o () ([ (1P, (8), G ()
+(p+ Do(t)(Jum (D17, (u ())r,
= 0 (8)([tem ()] tem (). 14n ()
+ (v + Da(t)(Jum(t )I”u m (), Uem (8))ry

3 (Vatem (8). V! () [Vl ()2 + Bi(0) 2

S (Vitem(£), Vit (1)

ROV O + 5 [ K= 1) P V(0
O Vit (0, Vi ()~ [ (=) (Tt (), Vil (),
0

here Ein(t) = 5l ||\/ Yl (D17 + (1 + [[Vatem @) Vg (DI +
2(Vu,,(t), Vul,, (£)?]. NOW Ho]dor qmequality and Young’s inequality
give us

a’(t)(lu(m( N ttem (), em( ))ro

y+1

- < moa(t)tem (13391, 1l (B
< Cs(MF ~ (0,00 Ve (PO + |l (8)]1,
< CoM el x (0,00) LTI Vttem (D)1 + mllual (1)1,
and
(3. 14)
& (1) ([t ()P0, (£), ull ())ry < M ()|l (D015 1,

+ 70t (|tt ()17, (0 (£)) )1, -

Considering the same argument, we obtain

(7 + D) (Jwem (O] v m (), wen ()1
< () (7 + Dlltem ()15 12,00 14em (E) 122,70 [1em (D),
< Cs(mlellF~ 0,00 | Vtterm 127 Vtg (D17 + 1llus (B 11,
< CoMlllF (0,00) LTI VUL (DI + |l (DIF, -

(3.15)
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Combining the arguments (3.13)-(3.15) and assumption on K, integrat-
ing it over (0,t), we have

E1m(t / |Vl (s)||2ds
+(1-2q) / [ (5) 12, s
+ (p+ 1 = n)alt)(|ul,, (017, (ul, (£)*)r,

t
< Eim(0) + 3 / 1Vt () [Vt (3)] s

(3.16)
b 3 im0 [ (o)
£ B(O) [Vt (Ve ()]
B(O) Vo Vet +3 a2 d
+ 1B [ [T r) P+ Calh) [ 1V (5P,
where

1
Ci(h) = §[Hh’”%1(0,oo) + |12l 21 (0,00) 1Pl Lo (0,00) + 1B (0)]]
1
+ 504(77)L¥Ha”%°°(0,oo)
and

g+ +M0)
2

Ca(h) = h(0) + Co(m |70 (0,00) L1 -

Considering the first estimate and employing Gronwall’s inequality, for
sufficiently small n > 0, we have

IV Ee()ugm O + Ve 1

(3.17) ’ ,
' / (||Vu;'m<s>|| O + i (IR, ) s < L,
0

where L3 is a positive constant independent of m € N and ¢ € [0,T.
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By the estimates we can extract subsequence (e, ) of (Uem) such that

(3.18) Uey — U  weak star  L°°(0,T;V),

(3.19) u,, —u, weak star L>(0,T;V),

(3.20) \/—K_(ui'u — /K. weak star  L=(0,T; L?(52)),
(3.21) Uy — ue  weak star  L°(0,T; L"*(T)),

(3.22) u,, — u, weak star  L*(0,T; LPT2(Ty)),

(3.23) ul, —u. weak L*(0,T;L*(To)),

(3.24) ug, — u,  weak L2(0,T; L?(Ty)).

The convergence (3.18)-(3.20) and (3.23) are sufficient to pass to the
limit in the linear terms of problem (3.1). Next we are going to consider
the nonlinear ones.

Analysis of the nonlinear terms

From the first and second estimates we deduce

(3.25) (tcm) is bounded in  L*(0,T; H3(Ty)),
(3.26) (/) is bounded in L*(0,T; H?(Ty)),
(3.27) (u” ) is bounded in  L*(0,T; L*(Ty)).

From (3.25)-(3.27), taking into consideration that the imbedding Hz (T')
< L2(T") is continuous and compact and using Aubin compactness the-
orem, we can extract a subsequence (ue,) of (uem) such that

(3.28) Uy — U a.e.on %o and ulL, —u, ae on X

m
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and therefore
(3.29) |uep|"uey — lucYue  and  Jug,|Pug, — uclfu;  ae on .
On the other hand, from the first and second estimate we obtain

(3.30) (Juep|Yte,) is bounded in  L*(%p),
(3.31) (lul,|Pul,) is bounded in  L*(So).

Combining (3.29)-(3.31), we deduce that

(3.32) [ep|Ttiep — |ue|"ue  weakly in - L*(So),

[ug, |Pug, — lucPu;  weakly in L*(Zg).

The last convergence is sufficient to pass to the limit in the nonlinear
terms of problem (3.1). Using standard arguments, we can show from
the above estimates that

(3.33)
K@®)u"(t) — (14 ||Vu)||*)Au(t) — Av'(t) - /0 h(t — r)Au(r)dr =0
in L _(0,T; L*(Q)),

loc

and also making use of the generalized Green’s formula we deduce that

A+ 1TaO) o))+ 50 = [ b= Shr)ar+ /()
) (o ()P () — O u(D) =0 in L0, 73 2(To).

(3.34)

This completes the proof of the existence of solutions of problem (1.1).

Uniqueness

Let u and v be strong solutions to problem (1.1). Define z = u — v,
then we deduce

(K (#)2"(t), w) + (2'(t), w)r, + () ([’ ()17u'(£) — ' ()17 (2), w)r,
+(V2'(t), Vw) + a(t)(ju(t)] u(t) — [v(t) v (t), w)r,

= /0 h(t — r)}(Vz(r), Vw)dr
+ (L + Vo)) (Vo(t), Vo) — (1 +[[Vu(t)[F)(Vu(t), Vw).
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47
Substituting w = z'(t), we have

5%“ VE®)Z ) - K@)/ O + 12013, + IV )12
+at) (I ()P (t) — [v' ()7 (2), 2/ (£))re

(@) 0(t) = Jut)[Tu(t), 2 (£))r +/0 ht —r)(Va(r), VZ'(t))dr

+ (14 Vo)) (Vo(t), VZ' (1) — (1 + [[Vu®) 1) (Vu(t), VZ'(¢)).
On the other hand, we note that

L+ IVe@®[*)(Vo(t). V2'(£) = (1 + [ Vu®)[|*)(Vu(t), V2 (1)
1d

= — S 210+ Va0 + (Vu(t), Vo'

+{IVe®)* — [Vu@®IP|(Vo(t), V()
1d

S+ IVu@®I) V2] + CrmII V2@l + 1l V2 (1))

ENIVz(t)]?
S —
Also

a()(Jo()] v () = [u®)u(t), 2’ (t))r,
< C(v)/F (lu®)™ + [o(®)[M)]z()]12'(£)|dT

NI 2.0, + 1017 2,062 272,06 12 ()l
< Cao(y. V2O +nll2' (B)IE,

and
[ it = 09200, 9 O < (9@ [ bt = DIVa0)ldr
0 0
< IV O 0 / h(t — )|V =(r) | 2dr)

t
< IV OF + Catmlibliroce) [ blt=n)IVa(r)|dr.
Thus we have

5 FIVED @I + @+ IVu@ PVl + (1 -
IR + (L=l OR,
< (i) + Caly, ) V=)

+ Cy I 1 0.00) / h(t — 1)||V2(r)||dr.

@IV (O
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Integrating it over (0,t), we have

SIVEDZ @I + (1 4+ [V 701
+(1—2n) /0 V2 (s)2ds
+6 /O I/ (s)|%ds + (1 - ) / 12/(5)|2, ds

< [C1(n) + Colram) + Ca(m) |2 .00 / IV 2(s)|2ds,

where we have used

I hls =PIV Pdrds < Wlsos) [ IVEds
0 0 0

Using Gronwall inequality, we have ||2'(t)|| = ||[Vz(t)|| = 0. This con-
cludes the proof of uniqueness for strong solutions. O

4. Uniform decay

In this section we prove the decay estimates for the energy of (1.1).
We define the energy E(t) of the problem (1.1) by

(41)  E@)= —II\/ O+ —||VU(t)H2 + %IIW(t)II‘*-

Then the derivative of energy is given by
(4.2)

B (1) = 50, W (OF) + [t = )(Tu(r), 9ol () |9 (0)

— [ @I, — @)l (O3 r, + o) (Ju(®)"u(t), v (£))r,-

We define (h O w) and the modified energy e(t) by

(4.3) (h D u)(t) = / Bt — r)llu(t) — u(r)|2dr,

(1) = SIVE@ O + @) + 5 0 Tu))

1

(4.4) ' 2 1 y+2
+ 30— [ MEaIVuOI + 5 a@OIT

[\]
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Then we have
(4.5)

¢(0) = (K0, W OF) = IV @I = W O, - el 0],

3 50 OO 7, + 20 (u(t) (), (),

_ —h OIVu)|? + %(h’ 0 Vu)(2).

Considering Young’s inequality, we get
(4.6)
, 1
20t ([u(t) P u(t). o (1))ry < el DI 3 pe +17 T OB -
Thus for v = p, the assumption (Ay) implies
(4.7)
g 3
(1) < = Sl O = Vo' OIF ~ lw' $)IF, = % (h O Vu)()

—a(t)(1 =)l (N5, — (6

1
— ShOIVU®)P.

my

v+ 2

+2
— ) w133 5,

Choosing n = 2~0F1) then 1 —n > 1 and

(4.8)
/ 5 / / 1 /
) < = S @)~ 19 @) ~ I @R, - Se®l 0I5,

— Bt 2 r, — ShOIVuOI? — 2 (h 0 Tu)o)
where 3 = +2 —2 > 0. On the other hand we note that from assumption
(As)

(4.9)
1 i 1
E() < FIVEDCOIE + 50 = [ hean)Du®l + 71V
<17 te(t)

and therefore it is enough to obtain the desired exponential decay for
the modified energy e(t) which will be done below.

For this purpose let A\ be the positive number such that |[v|? <
A|Vel]2, ¥V v € V and for every € > 0 let us define the perturbed modified

cnergy by
e (t) =e(t) +ep(t), where ¥(t) = (K(t)u'(t), u(t)).
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Applying Cauchy Schwarz’s inequality, we easily obtain the following
inequality.
PROPOSITION 4.1. We have the inequality for any € > 0
1
| ec(t) — e(t)] < eA3||K||Ze(t), V¢>0.
Now, we can prove the decay estimates by the following Proposition.

PROPOSITION 4.2. There exist C; > 0 and €; such that for € € (0, €]
el(t) < —eCre(t).

Proof. Using the equation (1.1), we have
(4.10)

V(O = —e(®)+ 5 IR (0] + (00 (1), u(t) = 5 Tulo)f?
- 1||Vu(t)|!4 — (V1) Vult)
+ 20TV - W, uo),

- 1/ h(r)dr||Vu(®)||* — a(t)(ju' (17w (), u(t)r,

+—a( a5, + /Oh(t—r)(VU(r),VU(t))dr-

Now applying Schwarz’s inequality and (4.3), we get
(4.11)

| e =n(Tutr), Tu®)dr < 50 0 V)@) + SITu@? [ wirar
0 0

(4.12)

(K0 (0, u(0) S 3 DIK ool DI + Vo),

(4.13)

O 0, u(®)r | < Ga) e Ol 3, + (O,

(4.14)

(@O0 < IV + L IR,

(4.15)

(Vo (8), V()] < allVu@®)|* + gl%llVU’(t)IP,
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where p > 0 such that fl“o [ul?dT < p [, |Vul®dz ¥V u € V. Combining
the results in (4.11)-(4.15), we have
(4.16)

YO S = elt) + G 1K oo + M1 mIE o)l ()P — SIV(t)

_ (% 3 /0 ) dr)|[Vu®)? + (b O Va) () + ﬁllu’(t)ll%o

1 /
+ EEIIVu’(t)IIQ +O2(ma(t)llw 01512 r, +ne®Olu®lf 2,

vy + 1 y+2

Choosing small 7 > 0 and ||h||11(0,00) such that 3 —3n — fot h(r)dr > 0.
Thus from (4.8), (4.16) and the assumption (As) and considering p = v,
we get

(4.17)
Lt) = /(1) + et/ (1)
< —celt) ~ (3 — el lK ]l + M D)Ko DI B
- FIvuol = (2 =9 0 Va)(t) - (= I 0,

—(1- Zl%)HVu'(t)H? - a(t)(% — eba ()| (D)I5T5 r,

y+1 2

—a(t)(B—(n+

. _ s &y 4 1 B(v+2) )
Defining €1 = min{3, 7L 41, 35,05 Graym a7 1 TRT= T2 TR TS

Then for each € such that € € (0, €], we have

(4.18) e.(t) < —eChe(t)

if ||R||L1(0,00) is sufficiently small. O
Continuing the proof of Theorem 2.1. Let ¢ = min{m,q}

and let us consider € € (0,¢g]. As we have € < —2——, we conclude

K2
from Proposition 4.1
(4.19)

—21-e<t> < (1— AP |K|ZD)e(t) < ec(t) < (1 + A |[K||Z)e(t) < geu),
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(4.18) and (4.19) implies

(4.20) eL(t) < —%Cleee(t).
Thus
(4.21) e(t) < 3€(O)ea:p(——§—016t).

Hence from (4.9) and (4.21) we get

B(t) <17le(t) < 3e(0)l'le:vp(—§Clet), £>0.

This concludes the proof of Theorem 2.1. O
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