• Title/Summary/Keyword: virus assay

Search Result 689, Processing Time 0.035 seconds

Expression of Antimicrobial Peptide (AMP), Moricin Using SUMO Fusion Tag in Escherichia coli (대장균에서 SUMO fusion tag을 이용하여 항균펩타이드인 moricin의 발현)

  • Ahn, Dong-gyu;Park, Sun Ill;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.956-961
    • /
    • 2022
  • Plant Chloroplast have several advantages as an expression platform of biopharmaceuticals over conventional expression platforms such as mammalian cells, yeast and bacteria. First, plants do not serve as a host for mammalian infectious virus and have endotoxin like bacteria which can cause anaphylactic shock. In addition, high copy number of chloroplast genome allows for chloroplast transformants to reach the high level of expression of heterologous genes. Moreover, the integration of transgenes into specific region of chloroplast genomes makes chloroplast transformants unaffected by positional effect which can be frequently observed from nuclear transformants, resulting in loss of transgene expressions. Antimicrobial peptides (AMPs) are a kind of innate immunity which is found from bacteria to humans. Unlike conventional antibiotics, very less dosage of AMPs can have catastrophic effect on bacterial survival. Further, the repeated use of AMPs does not trigger the development of bacterial resistance. Moricin, one of the AMPs, was isolated from Bombyx mori, a silkworm moth. The C-terminal of moricin consists largely of basic amino acids, and the N-terminal has an α-helix structure. Moricin was chosen and expressed in a SUMO/SUMOase without leaving any unwanted amino acids which could potentially affect the anti-bacterial activity of the moricin. The transformation vector used in this study has already been created in this lab for the expression in both prokaryotic systems such as E. coli and chloroplast. The expressed moricin was purified using Ni columns and SUMOase, and the antibacterial activity of the purified moricin was confirmed using an agar diffusion assay.

Promoter Analysis of the Cell Surface-abundant and Hypoviral-regulated Cryparin Gene from Cryphonectria parasitica

  • Kim, Myoung-Ju;Kwon, Bo-Ra;Park, Seung-Moon;Chung, Hea-Jong;Yang, Moon-Sik;Churchill, Alice C.L.;Van Alfen, Neal K.;Kim, Dae-Hyuk
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.496-502
    • /
    • 2008
  • Cryparin, encoded as a single copy gene (Crp) of the chestnut blight fungus Cryphonectria parasitica, is the most abundant protein produced by this fungus. However, its accumulation is decreased remarkably in C. parastica strains containing the double-stranded (ds) RNA virus Cryphonectria hypovirus 1. To characterize the transcriptional regulatory element(s) for strong expression and viral regulation, promoter analysis was conducted. Serial deletion of the Crp promoter region resulted in a step-wise decrease in promoter activity, indicating a localized distribution of genetic elements in the cryparin promoter. Promoter analysis indicated two positive and a repressive cis-acting elements. Among them, the promoter region between nt -1,282 and -907 appeared to be necessary for hypoviral-mediated down-regulation. An electrophoretic mobility shift assay (EMSA) on the corresponding promoter region (-1,282/-907) indicated two regions at (-1,257/-1,158) and (-1,107/-1,008) with the characteristic AGGAGGA-N42-GAGAGGA and its inverted repeat TCCTCTC-N54-TCCTCCT, respectively, appeared to be specific binding sites for cellular factors.

Erythropoietin-producing Human Hepatocellular Carcinoma Receptor B1 Polymorphisms are Associated with HBV-infected Chronic Liver Disease and Hepatocellular Carcinoma in a Korean Population

  • Kim, Kyoung-Yeon;Lee, Seung-Ku;Kim, Min-Ho;Cheong, Jae-Youn;Cho, Sung-Won;Yang, Kap-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.192-201
    • /
    • 2008
  • Erythropoietin-producing human hepatocellular carcinoma receptor B1 (EPHB1) is a member of the Eph family of receptor tyrosine kinases that mediate vascular system development. Eph receptor overexpression has been observed in various cancers and is related to the malignant transformation, metastasis, and differentiation of cancers, including hepatocellular carcinoma (HCC). Eph receptors regulate cell migration and attachment to the extracellular matrix by modulating integrin activity. EphrinB1, the ligand of EPHB1, has been shown to regulate HCC carcinogenesis. Here, we sought to determine whether EPHB1 polymorphisms are associated with hepatitis B virus (HBV)-infected liver diseases, including chronic liver disease (CLD) and HCC. We genotyped 26 EPHB1 single nucleotide polymorphisms (SNPs) in 399 Korean CLD, HCC, and LD (CLD+HCC) cases and seroconverted controls (HBV clearance, CLE) using the GoldenGate assay. Two SNPs (rs6793828 and rs11717042) and 1 haplotype that were composed of these SNPs were associated with an increased risk for CLD, HCC, and LD (CLD+HCC) compared with CLE. Haplotypes that could be associated with HBV-infected liver diseases by affecting downstream signaling were located in the Eph tyrosine kinase domain of EPHB1. Therefore, we suggest that EPHB1 SNPs, haplotypes, and diplotypes may be genetic markers for the progression of HBV-associated acute hepatitis to CLD and HCC.

Opposite Roles of B7.1 and CD28 Costimulatory Molecules for Protective Immunity against HSV-2 Challenge in a gD DNA Vaccine Model

  • Weiner, David B.;Sin, Jeong-Im
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.68-77
    • /
    • 2005
  • Background: Costimulation is a critical process in Ag-specific immune responses. Both B7.1 and CD28 molecules have been reported to stimulate T cell responses during antigen presentation. Therefore, we tested whether Ag-specific immune responses as well as protective immunity are influenced by coinjecting with B7.1 and CD28 cDNAs in a mouse HSV-2 challenge model system. Methods: ELISA was used to detect levels of antibodies, cytokines and chemokines while thymidine incorporation assay was used to evaluate T cell proliferation levels. Results: Ag-specific antibody responses were enhanced by CD28 coinjection but not by B7.1 coinjection. Furthermore, CD28 coinjection increased IgG1 production to a significant level, as compared to pgD+pcDNA3, suggesting that CD28 drives Th2 type responses. In contrast, B7.1 coinjection showed the opposite, suggesting a Th1 bias. B7.1 coinjection also enhanced Ag-specific Th cell proliferative responses as well as production of Th1 type cytokines and chemokines significantly higher than pgD+pcDNA3. However, CD28 coinjection decreased Ag-specific Th cell proliferative responses as well as production of Th1 types of cytokines and chemokine significantly lower than pgD+pcDNA3. Only MCP-1 production was enhanced by CD28. B7.1 coimmunized animals exhibited an enhanced survival rate as well as decreased herpetic lesion formation, as compared to pgD+pcDNA3. In contrast, CD28 vaccinated animals exhibited decreased survival from lethal challenge. Conclusion: This study shows that B7.1 enhances protective Th1 type cellular immunity against HSV-2 challenge while CD28 drives a more detrimental Th2 type immunity against HSV-2 challenge, supporting an opposite role of B7.1 and CD28 in Ag-specific immune responses to a Th1 vs Th2 type.

Expression of porcine circovirus type 2 capsid protein fused with partial polyhedrin using baculovirus

  • Lee, Jun Beom;Bae, Sung Min;Shin, Tae Young;Woo, Soo Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.30 no.2
    • /
    • pp.50-57
    • /
    • 2015
  • Porcine circovirus type 2 (PCV2) is an important infectious swine virus causing postweaning multisystemic wasting syndrome (PMWS). PCV2 capsid protein, encoded by ORF2 has type-specific epitopes, is very immunogenic, and is associated with the induction of neutralizing antibodies. For the efficient production of capsid protein, recombinant Autographa californica nucleopolyhedroviruses were generated to express ORF2 fused with two forms of a partial polyhedrin. Recombinant capsid protein was produced successfully with the partial polyhedrin fusion form and the yield was high, as was shown by SDS-PAGE. Production of recombinant capsid proteins in insect cells was confirmed by Western blot analysis using anti-His monoclonal antibody, anti-ORF2 monoclonal antibody, and anti-PCV2 porcine serum. Fusion expression with amino acids 19 to 110 of the polyhedrin increased the production of recombinant capsid protein, but fusion with amino acids 32 to 85 did not. Additionally, PCV2 capsid protein is a glycoprotein; however, the glycosylation of recombinant protein was not observed. The results of an Enzyme-linked immunosorbent assay (ELISA) showed that recombinant capsid proteins could be utilized as antigens for fast, large-scale diagnosis of PCV2-infected pigs. Our results suggest that the fusion expression of partial polyhedrin is able to increase the production of recombinant PCV2 capsid protein in insect cells.

Occurrence of postweaning multisystemic wasting syndrome in pigs in Jeju (제주지역 양돈장 자돈에서 발생한 이유후 전신성 소모성 증후군의 증례)

  • Kang, Jong-chul;Jeong, Kyong-ju;Ahn, Mee-jung;Lee, Du-sik;Kang, Wan-chul;Kim, Jin-hoe;Shin, Tae-kyun
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.367-371
    • /
    • 2001
  • Multiplex PCR and immunohistochemistry were used to detect and differentiate between porcine circovirus (PCV) type-I and the PCV associated with postweaning multisystemic wasting syndrome (PMWS). Unique DNA product to PCV type-II was confirmed the some organs including lymph nodes, tonsil and spleen from eight pigs in Jeju by multiplex PCR. In this study, the samples were tested by a multiplex PCR assay to determine the type of PCV in each case; all cases were PCV type-II positive. PCV type-II was identified not only in typical PMWS cases, but also in field cases submitted with various clinical histories, some of which were not suggestive of PMWS. Immunohistochemically PCV type-II antigen was detected in macrophage-like cells in the tonsil, liver, lymph nodes and spleen, while some hepatocytes and renal tubular epithelial cells were also positive to the virus. This study suggested that PCV type-II is one of the causative agents of PMWS as well as the major type of PCV in the affected pigs in Jeju.

  • PDF

Expression Profiles and Pathway Analysis in HEK 293 T Cells Overexpressing HIV-1 Tat and Nucleocapsid Using cDNA Microarray

  • Park, Seong-Eun;Lee, Min-Joo;Yang, Moon-Hee;Ahn, Ka-Young;Jang, Soo-In;Suh, Young-Ju;Myung, Hee-Joon;You, Ji-Chang;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.154-161
    • /
    • 2007
  • Human immunodeficiency virus type 1 (HIV-1) infections are responsible for a substantial number of deaths annually and represent a significant threat to public health. According to the latest study, the Tat (Transactivator of transcription) protein is essential in transcription and replication of viral genes, and is among the early expression genes involved in the life cycle of HIV. The virion NC (nucleocapsid) plays an important role in early mRNA expression and contributes to the rapid viral replication that occurs during HIV-1 infection. Therefore, we attempted to elucidate the relationship between the Tat protein and nucleocapsid protein. In a comparison of two independently prepared and hybridized samples, flag NC overexpressed HEK 293T cells and pTat overexpressed HEK 293T cells, and hybridization showed the differences in expression in each case. Among the microarray results confirmed with real-time reverse transcriptase assay, twelve genes were identified to be involved according to their gene expression profiles. Of approximately 8,208 human genes that were analyzed, we monitored candidate genes that might have been related to NC and Tat genes from gene expression profiles. Additionally, the pathways could be viewed and analyzed through the use of Pathway Studio software. The pathways from the gene list were built and paths were found among the molecules/cell objects/processes by the curation method.

Protection of Mice Against Pandemic H1N1 Influenza Virus Challenge After Immunization with Baculovirus-Expressed Stabilizing Peptide Fusion Hemagglutinin Protein

  • Yang, Eunji;Cho, Yonggeun;Choi, Jung-ah;Choi, YoungJoo;Park, Pil-Gu;Park, Eunsun;Lee, Choong Hwan;Lee, Hyeja;Kim, Jongsun;Lee, Jae Myun;Song, Manki
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.280-287
    • /
    • 2015
  • Current influenza vaccines are produced in embryonated chicken eggs. However, egg-based vaccines have various problems. To address these problems, recombinant protein vaccines have been developed as new vaccine candidates. Unfortunately, recombinant proteins frequently encounter aggregation and low stability during their biogenesis. It has been previously demonstrated that recombinantly expressed proteins can be greatly stabilized with high solubility by fusing stabilizing peptide (SP) derived from the C-terminal acidic tail of human synuclein (ATS). To investigate whether SP fusion proteins can induce protective immunity in mice, we produced influenza HA and SP fusion protein using a baculovirus expression system. In in vitro tests, SP-fused recombinant HA1 (SP-rHA1) was shown to be more stable than recombinant HA1 (rHA1). Mice were immunized intramuscularly with baculovirus-expressed rHA1 protein or SP-rHA1 protein ($2{\mu}g/mouse$) formulated with aluminum hydroxide. Antibody responses were determined by ELISA and hemagglutination inhibition assay. We observed that SP-rHA1 immunization elicited HA-specific antibody responses that were comparable to rHA1 immunization. These results indicate that fusion of SP to rHA1 does not negatively affect the immunogenicity of the vaccine candidate. Therefore, it is possible to apply SP fusion technology to develop stable recombinant protein vaccines with high solubility.

Discovering Novel Genes of poultry in Genomic Era

  • S.K. Kang;Lee, B.C.;J.M. Lim;J.Y. Han;W.S. Hwang
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.143-153
    • /
    • 2001
  • Using bioinformatic tools for searching the massive genome databases, it is possible to Identify new genes in few minutes for initial discoveries based on evolutionary conservation, domain homology, and tissue expression patterns, followed by further verification and characterization using the bench-top works. The development of high-density two-dimensional arrays has allowed the analysis of the expression of thousands of genes simultaneously in the humans, mice, rats, yeast, and bacteria to elucidate the genes and pathways involved in physiological processes. In addition, rapid and automated protein identification is being achieved by searching protein and nucleotide sequence databases directly with data generated from mass spectrometry. Recently, analysis at the bio-chemical level such as biochemical screening and metabolic profiling (Biochemical genomics) has been introduced as an additional approach for categorical assignment of gene function. To make advantage of recent achievements in computational approaches for facilitated gene discoveries in the avian model, chicken expression sequence tags (ESTs) have been reported and deposited in the international databases. By searching EST databases, a chicken heparanase gene was identified and functionally confirmed by subsequent experiments. Using combination of sub-tractive hybridization assay and Genbank database searches, a chicken heme -binding protein family (cSOUL/HBP) was isolated in the retina and pineal gland of domestic chicken and verified by Northern blot analysis. Microarrays have identified several host genes whose expression levels are elevated following infection of chicken embryo fibroblasts (CEF) with Marek's disease virus (MDV). The ongoing process of chicken genome projects and new discoveries and breakthroughs in genomics and proteomics will no doubt reveal new and exciting information and advances in the avian research.

  • PDF

Intestinal Parasitosis in Relation to Anti-Retroviral Therapy, CD4+ T-cell Count and Diarrhea in HIV Patients

  • Khalil, Shehla;Mirdha, Bijay Ranjan;Sinha, Sanjeev;Panda, Ashutosh;Singh, Yogita;Joseph, Anju;Deb, Manorama
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.705-712
    • /
    • 2015
  • Intestinal parasitic infections are one of the major causes of diarrhea in human immunodeficiency virus (HIV) seropositive individuals. Antiretroviral therapy has markedly reduced the incidence of many opportunistic infections, but parasite-related diarrhea still remains frequent and often underestimated especially in developing countries. The present hospital-based study was conducted to determine the spectrum of intestinal parasitosis in adult HIV/AIDS (acquired immunodeficiency syndrome) patients with or without diarrhea with the levels of $CD4^+$ T-cell counts. A total of 400 individuals were enrolled and were screened for intestinal parasitosis. Of these study population, 200 were HIV seropositives, and the remaining 200 were HIV uninfected individuals with or without diarrhea. Intestinal parasites were identified by using microscopy as well as PCR assay. A total of 130 (32.5%) out of 400 patients were positive for any kinds of intestinal parasites. The cumulative number of parasite positive patients was 152 due to multiple infections. A significant association of Cryptosporidium (P<0.001) was detected among individuals with $CD4^+$ T-cell counts less than $200cells/{\mu}l$.