Browse > Article

Opposite Roles of B7.1 and CD28 Costimulatory Molecules for Protective Immunity against HSV-2 Challenge in a gD DNA Vaccine Model  

Weiner, David B. (Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine)
Sin, Jeong-Im (Department of Microbiology, Catholic University of Daegu School of Medicine)
Publication Information
IMMUNE NETWORK / v.5, no.2, 2005 , pp. 68-77 More about this Journal
Abstract
Background: Costimulation is a critical process in Ag-specific immune responses. Both B7.1 and CD28 molecules have been reported to stimulate T cell responses during antigen presentation. Therefore, we tested whether Ag-specific immune responses as well as protective immunity are influenced by coinjecting with B7.1 and CD28 cDNAs in a mouse HSV-2 challenge model system. Methods: ELISA was used to detect levels of antibodies, cytokines and chemokines while thymidine incorporation assay was used to evaluate T cell proliferation levels. Results: Ag-specific antibody responses were enhanced by CD28 coinjection but not by B7.1 coinjection. Furthermore, CD28 coinjection increased IgG1 production to a significant level, as compared to pgD+pcDNA3, suggesting that CD28 drives Th2 type responses. In contrast, B7.1 coinjection showed the opposite, suggesting a Th1 bias. B7.1 coinjection also enhanced Ag-specific Th cell proliferative responses as well as production of Th1 type cytokines and chemokines significantly higher than pgD+pcDNA3. However, CD28 coinjection decreased Ag-specific Th cell proliferative responses as well as production of Th1 types of cytokines and chemokine significantly lower than pgD+pcDNA3. Only MCP-1 production was enhanced by CD28. B7.1 coimmunized animals exhibited an enhanced survival rate as well as decreased herpetic lesion formation, as compared to pgD+pcDNA3. In contrast, CD28 vaccinated animals exhibited decreased survival from lethal challenge. Conclusion: This study shows that B7.1 enhances protective Th1 type cellular immunity against HSV-2 challenge while CD28 drives a more detrimental Th2 type immunity against HSV-2 challenge, supporting an opposite role of B7.1 and CD28 in Ag-specific immune responses to a Th1 vs Th2 type.
Keywords
Costimulatory molecules; cytokines; chemokines; infectious immunity-virus; Th1/Th2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Orabona e. Grohmann U. Belladonna ML. Fallarino F. Vacca C Bianchi R. Bozza S. Volpi C Salomon BL. Fioretti Me. Romani L. Puccetti P: CD28 induces immunostimulatorv signals in dendritic cells via CD80 and CD86. Nat Immunol 5;1134-1142. 2004   DOI   ScienceOn
2 Iwasaki A. Stiernholm BT. Chan AK. Berstein NL. Barber BH: Enhanced CTL responses mediated by plasmid DNA irnmunozens encoding costimulatorv molecules and cytokines. J Immunol 158;4591-4601. 1997   PUBMED
3 Maue AC Waters WR. Palmer MV. Whipple DL. Minion Fe. Brown We. Estes DM: CD80 and CD86. but not CD154. augment DNA vaccine-induced protection in experimental bovine tuberculosis. Vaccine 23;769-779. 2004   DOI   ScienceOn
4 Ghiasi H, Cai S, Slanina S, Nesburn AB, Wechsler SL: Vaccination of mice with herpes simplex virus type 1 glvconrotein D DNA produces low levels of protection against lethal HSV-l challenge. Antiviral Res 28;147-157, 1995   DOI   ScienceOn
5 Sin JI. Kim JI. Dang K Lee D. Patchuk e. Satishchandran e. Weiner DB: LFA-3 plasmid DNA enhances Az-specific humoral and cellular mediated protective immunity against herpes simplex virus-2 in vivo: Involvement of CD4 + T cells in protection. Cell Immunol 203;19-28, 2000   DOI   ScienceOn
6 Sin TI, Kim JI, Ugen KE, Ciccarelli RB, Higgins TJ. Weiner DB: Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte macrophage-colony stimulating factor expression cassettes. Eur J Immunol 28;3530-3540, 1998   DOI   ScienceOn
7 Kim JJ. Nottingham LK Sin TI. Tsai A Morrison L, Dang K, Hu Y, Kazahava K, Bennett M, Dentchev T, Wilson DM, Chalian AA, Bover TD, Azadianvan MG, Weiner DB: CD8 positive T-cells influence antigen-specific immune responses through the expression of chemokines. J Clin Invest 102; 1112-1124, 1998   DOI   ScienceOn
8 Sallusto F, Lenig D, Mackav CR. Lanzavecchia A: Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187; 875-883, 1998   DOI   ScienceOn
9 Lukacs NW, Chensue SW, Karpus WL Lincoln P, Keefer C Strieter RM, Kunkel SL: C-C chemokines differentiallv alter interleukin-4 production from lymphocytes. Am J Pathol 150;1861-1868, 1997   PUBMED
10 Sin JI. Kim JL Pachuk C Satishchanran C Weiner DB: DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th-l type CD4+ T cell-mediated protecetive immunitv against herpes simplex virus-2 in vivo. J Virol 74; 11173-11180, 2000   DOI   ScienceOn
11 Guidotti LG, Rochford K Chung L Shapiro M, Purcell R. Chisari FV: Viral clearance without destruction of infected cells during acute HBV. Science 284;825-829, 1999   DOI   PUBMED   ScienceOn
12 Chatterzoon MA Robinson TM, Bover J, Weiner DB: Specific immune induction following DNA-based immunization through in vivo transfection and activation of macrophages. J Immunol 160;5707-5718, 1998   PUBMED
13 Lanier LL. O'Fallon S. Somoza e. Phillips TH. Linsley PS. Okumura K: CD80 (B7) and CD86 (B70) provide similar costimulatorv signals for T-cell proliferation. cvtokine production. and generation of CTL. J Immunol 154;97-105. 1995   PUBMED
14 Carreno BM. Collins M: The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Ann Rev Immunol 20;29-53. 2002   DOI   ScienceOn
15 Milligan GN, Bernstein DI: Generation of humoral immune responses against herpes simplex virus type 2 in the murine female genital tract. Virol 206;234-241, 1995   DOI   ScienceOn
16 Schall TT: Biology of the RANTES/SIS cytokine family. Cytokine 3;165-183, 1991   DOI   PUBMED   ScienceOn
17 Martin S. Moss B, Berman PW. Laskev LA. Rouse BT: Mechanisms of antiviral immunity induced bv a vaccine virus recombinant expressing herpes simplex virus type 1 zlvcoprotein D: cytotoxic T-cells. J Virol 61;726-734, 1987   PUBMED
18 Tumpev TM, Cheng RYan XT Oakes JE. Lausch RN: Chemokine svnthesis in the HSV-1-infected cornea and its suppression bv interleukin-10. J Leuko Biol 63;486-492, 1998   DOI
19 Bian Y. Hiraoka S. Tomura M. Zhou XY. Yashiro-Ohtani Y. Mori Y. Shimizu T. Ono S. Dunussi-Ioannonoulos K. Wolf S. Fujiwara H: The capacitv of the natural ligands for CD28 to drive IL-4 expression in naive and antigen-primed CD4 + and CD8 + T cells. Int Immunol 17;73-83. 2005   DOI   ScienceOn
20 Sin JI, Kim J Chatterzoon M, Avvavoo V, McCallus D, Ugen ICE. Bover JD, Weiner DB: Engineering of DNA vaccines using molecular adjuvant plasmids. Dev Biol(Basel) 104; 187-198, 2000   PUBMED
21 Karpus WT, Kennedv KJ. Kunkel SL, Lukacs NW: Monocvte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. J Exp Med 187;733-741, 1998   DOI   ScienceOn
22 June C Bluestone TA. Nadler LM. Thompson CB: The B7 and CD28 receptor families. Immunol Today 15;321-333, 1994   DOI   ScienceOn
23 Ho M: Interferon as an agent against herpes simplex virus. J Investig Dermatol 95;S158-S160, 1990   DOI   ScienceOn
24 McDermott MR, Smiley TR, Leslie P, Brais J. Rudzroza HE, Bienenstock T: Immunitv in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simlex virus type 2. J Virol 51;747-753, 1984   PUBMED
25 Oppenheim JT, Zachariae CO, Mukaida N. Matsushima K: Properties of the novel nroinflarnrnatorv supergene 'intercrine' cvtokine family. Ann Rev Immunol 9;617-648. 1991   DOI   ScienceOn
26 Kubo M. Yamashita M. Abe R. Tada T. Okumura K. Ransom ,TT. Nakayama T: CD28 costimulation accelerates IL-4 receptor sensitivitv and IL-4-mediated Th2 differentiation. J Immunol 163;2432-2442. 1999   PUBMED
27 Mivahira Y. Katae M. Kobayashi S. Takeuchi T. Fukuchi Y. Abe R. Okumura K. Yazita H. Aoki T: Critical contribution of CD28-CD80/CD86 costimulatorv pathway to protection from Trvpanosoma cruzi infection. Infect Immun 71;3131-3137. 2003   DOI   ScienceOn
28 Sin TI, Kim n, Bover TD, Higgins TI. Ciccarelli RB, Weiner DB: In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex virus type 2 mouse model. J Virol 73;501-509, 1999   PUBMED
29 Kuklin NA Daheshia M. Chun S. Rouse BT: Role of mucosal immunity in herpes simplex virus infection. J Immunol 160;5998-6003, 1998   PUBMED
30 Yu Z, Manickan E, Rouse BT: Role of interferon-gamma in immunity to herpes simplex virus. J Leuko Biol 60;528-532, 1996   DOI
31 Sin TI. Avvavoo V. Bover I. Kim I. Ciccarelli RB. Weiner DB: Protective immune correlates can segregate bv vaccine type in a murine herpes model system. Int Immunol 11; 1763-1773, 1999   DOI   ScienceOn
32 Sin TI, Kim n, Arnold RL, Shroff KE, McCallus D, Pachuk e. McElhinev SP. Wolf MW. Pompa-de Bruin S1. Higgins TI. Ciccarelli RB, Weiner DB: Interleukin-12 gene as a DNA vaccine adjuvant in a herpes mouse model: TI-12 enhances Th1 type CD4+ T cell mediated protective immunity against HSV-2 challenge. J Immunol 162;2912-2921, 1999   PUBMED
33 Murphv WJ, Taub DD, Anver M, Conlon K, Oppenheim JJ. Kelvin DJ. Longo DL: Human RANTES induces the migration of human T lvmnhocvtes into the peripheral tissues of mice with severe combined immune deficiency. Eur J Immunol 24;1823-1827, 1994   DOI   ScienceOn
34 Snapper CM. Paul WE: Interferon-gamma and B cell stimulatorv factor-1 reciprocally regulate Ig isotype production. Science 236;944-947. 1987   DOI   PUBMED
35 Rodrizuez-Palrnero M. Hara T. Thumbs A Hunia T: Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur J Immunol 29;3914-3924. 1999   DOI   ScienceOn
36 Nahmias AJ. Dannenbarzer J. Wickliffe C Muther J: Clinical aspects of infection with herpes simplex virus 1 and 2. Elsevier. New York. 1980
37 Sin TI. Bazarazzi M, Patchuk e. Weiner DB: DNA primingprotein boosting enhances both Az-specific antibody and Th 1 type cellular immune responses in a murine herpes simplex virus-2 gD vaccine model. DNA Cell Biol 18;771779, 1999
38 Taub DD, Turcovski-Corrales SM, Kev ML, Longo DL, Murphv WT: Chemokines and T lvrnphocvte activation: I. Beta chemokines costimulate human T lvmphocyte activation in vitro. J Immunol 156;2095-2103, 1996   PUBMED
39 Kim TT. Bazarazzi ML. Trivedi N. Hu Y. Chatterzoon MA. Dang K. Mahalinzarn S. Azadianvan MG. Boyer TD. Wang B. Weiner BD: Engineering of in vivo immune responses to DNA immunization via co-delivery of costimulatory molecule genes. Nat Biotech 15;641-645. 1997   DOI   ScienceOn
40 Cruz PE, Khalil PL, Drvden TD, Chiou He. Fink PS, Berberich S1. Bizlev NT: A novel immunization method to induce cvtotoxic T-lvmphocvte responses (CTL) against plasmid-encoded herpes simplex virus type-1 glycoprotein D. Vaccine 17;1091-1099, 1999   DOI   ScienceOn
41 Guidotti LG, Borrow P, Brown A, McClarv R Koch R. Chisari FV: Noncvtopathic clearance of lvmphocvte choriomeningitis virus from the hepatocyte. J Exp Med 189;1555-1564, 1999   DOI   ScienceOn
42 Sharpe AH. Freeman GT: The B7-CD28 superfamily. Nat Rev Immunol 2;116-126. 2002   DOI   ScienceOn
43 Meurer R. Van Riper G, Feenev W, Cunningham P, Hora Jr. D, Springer MS, Maclnrvre DE. Rosen H: Formation of eosinophilic and rnoncvtic intradermal inflammatory sites in the dog bv iniection of human RANTES but not human monocvte chemoattractant protein 1. human macrophage inflammatory protein 1 alpha, or human interleukin 8. J Exp Med 178;1 913-1921. 1993
44 Flo T. Tisminetzkv S. Baralle F: Modulation of the immune response to DNA vaccine by co-delivery of costimulatory molecules. Immunol 100;259-267. 2000   DOI   ScienceOn
45 Schall TJ. Bacon K, Tov KJ. Goeddel DV: Selective attraction of monocvtes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347;669-671, 1990   DOI   ScienceOn