Browse > Article

Expression Profiles and Pathway Analysis in HEK 293 T Cells Overexpressing HIV-1 Tat and Nucleocapsid Using cDNA Microarray  

Park, Seong-Eun (Department of Biological Science, Sookmyung Women's University)
Lee, Min-Joo (Department of Biological Science, Sookmyung Women's University)
Yang, Moon-Hee (Department of Biological Science, Sookmyung Women's University)
Ahn, Ka-Young (Department of Biological Science, Sookmyung Women's University)
Jang, Soo-In (Department of Pathology, College of Medicine, the Catholic University of Korea)
Suh, Young-Ju (Department of Biological Science, Sookmyung Women's University)
Myung, Hee-Joon (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
You, Ji-Chang (Department of Pathology, College of Medicine, the Catholic University of Korea)
Park, Jong-Hoon (Department of Biological Science, Sookmyung Women's University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 154-161 More about this Journal
Abstract
Human immunodeficiency virus type 1 (HIV-1) infections are responsible for a substantial number of deaths annually and represent a significant threat to public health. According to the latest study, the Tat (Transactivator of transcription) protein is essential in transcription and replication of viral genes, and is among the early expression genes involved in the life cycle of HIV. The virion NC (nucleocapsid) plays an important role in early mRNA expression and contributes to the rapid viral replication that occurs during HIV-1 infection. Therefore, we attempted to elucidate the relationship between the Tat protein and nucleocapsid protein. In a comparison of two independently prepared and hybridized samples, flag NC overexpressed HEK 293T cells and pTat overexpressed HEK 293T cells, and hybridization showed the differences in expression in each case. Among the microarray results confirmed with real-time reverse transcriptase assay, twelve genes were identified to be involved according to their gene expression profiles. Of approximately 8,208 human genes that were analyzed, we monitored candidate genes that might have been related to NC and Tat genes from gene expression profiles. Additionally, the pathways could be viewed and analyzed through the use of Pathway Studio software. The pathways from the gene list were built and paths were found among the molecules/cell objects/processes by the curation method.
Keywords
Profiles; pathway; HIV-1; NC; Tat;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Baggiolini, M., B. Dewald, and B. Moser. 1994. Interleukin- 8 and related chemotactic cytokines-CXC and CC chemokines. Adv. Immunol. Res. 55: 97-179
2 Brigati, C., M. Giacca, D. M. Noonan, and A. Albini. 2003. HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett. Res. 220: 57-65   DOI   ScienceOn
3 Lockhart, D. J., H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E. L. Brown. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. Res. 14: 1675-1680   DOI   ScienceOn
4 Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Sci. Res. 270: 467-470
5 Yoshimura, T., K. Matsushima, S. Tanaka, E. A. Robinson, E. Appella, J. J. Oppenheim, and E. J. Leonard. 1987. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. USA 84: 9233-9237
6 Khan, R. and D. P. Giedroc. 1992. Recombinant human immunodeficiency virus type 1 nucleocapsid (NCp7) protein unwinds tRNA. J. Biol. Chem. Res. 267: 6689-6695
7 Gerszten, R. E., E. A. Garcia-Zepeda, Y. C. Lim, M. Yoshida, H. A. Ding, M. A. Gimbrone Jr., A. D. Luster, F. W. Luscinskas, and A. Rosenzweig. 1999. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nat. Res. 398: 718-723
8 Lee, S. G., Y. J. Kim, S. I. Han, Y. K. Oh, S. H. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraint-based metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998   과학기술학회마을
9 Larsen, C. G., A. O. Anderson, E. Appella, J. J. Oppenheim, and K. Matsushima. 1989. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Sci. Res. 243: 1464-1466
10 Fotheringham, J., M. Mayne, C. Holden, A. Nath, and J. D. Geiger. 2004. Adenosine receptors control HIV-1 Tat-induced inflammatory responses through protein phosphatase. Virol. Res. 327: 186-195   DOI   ScienceOn
11 Gallo, R. C., A. Burny, and D. Zagury. 2002. Targeting Tat and IFN(alpha) as a therapeutic AIDS vaccine. DNA Cell Biol. Res. 21: 611-618   DOI   ScienceOn
12 Tan, A., P. Bitterman, N. Sonenberg, M. Peterson, and V. Polunovsky. 2000. Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene Res. 19: 1437-1447   DOI   ScienceOn
13 Lee, N., R. J. Gorelick, and K. Musier-Forsyth. 2003. Zinc finger-dependent HIV-1 nucleocapsid protein-TAR RNA interactions. Nucleic Acids. Res. 31: 4847-4855   DOI
14 Wain-Hobson, S., P. Sonigo, O. Danos, S. Cole, and M. Alizon. 1985. Nucleotide sequence of the AIDS virus, LAV. Cell. Res. 40: 9-17   DOI   ScienceOn
15 Clemens, M. J., M. Bushell, I. W. Jeffrey, V. M. Pain, and S. J. Morley. 2000. Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ. Res. 7: 603-615   DOI   ScienceOn
16 Kim, B. S., S. J. Kang, S. B. Lee, W. Hwang, and K. S. Kim. 2005. Simple method to correct gene-specific dye bias from partial dye swap information of a DNA microarray experiment. J. Microbiol. Biotechnol. 15: 1377-1383   과학기술학회마을
17 de la Fuente, C., F. Santiago, L. Deng, C. Eadie, I. Zilberman, K. Kehn, A. Maddukuri, S. Baylor, K. Wu, C. G. Lee, A. Pumfery, and F. Kashanchi. 2002. Gene expression profile of HIV-1 Tat expressing cells: A close interplay between proliferative and differentiation signals. BMC Biochem. 3: 14
18 Neuveut, C., R. M. Scoggins, D. Camerini, R. B. Markham, and K. T. Jeang. 2003. Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J. Biomed. Sci. Res. 10: 651-660   DOI
19 Ko, K. S., J. Y. Lee, J. H. Song, J. Y. Baek, W. S. Oh, J. S. Chun, and H. S. Yoon. 2006. Screening of essential genes in Staphylococcus aureus N315 using comparative genomics and allelic replacement mutagenesis. J. Microbiol. Biotechnol. 16: 623-632   과학기술학회마을
20 Gottlinger, H. G., J. G. Sodroski, and W. A. Haseltine. 1989. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 86: 5781-5785
21 Li, S., N. Sonenberg, A.-C. Gingras, M. Peterson, S. Avdulov, V. A. Polunovsky, and P. B. Bitterman. 2002. Translational control of cell fate: Availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency. Mol. Cell. Biol. Res. 22: 2852-2861
22 Lane, B. R., K. Lore, P. J. Bock, J. Andersson, M. J. Coffey, R. M. Strieter, and D. M. Markovitz. 2001. Interleukin-8 stimulates human immunodeficiency virus type 1 replication and is a potential new target for antiretroviral therapy. J Virol. Res. 75: 8195-8202   DOI   ScienceOn
23 Accola, M. A., B. Strack, amd H. G. Gottlinger. 2000. Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J Virol. Res. 74: 5395-5402   DOI   ScienceOn
24 Ensoli, B., L. Buonaguro, G. Barillari, V. Fiorelli, R. Gendelman, R. A. Morgan, P. Wingfield, and R. C. Gallo. 1993. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. Res. 67: 277-287
25 Koch, A. E., P. J. Polverini, S. L. Kunkel, L. A. Harlow, L. A. DiPietro, V. M. Elner, S. G. Elner, and R. M. Strieter. 1992. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Sci. Res. 258: 1798-1801