DOI QR코드

DOI QR Code

Erythropoietin-producing Human Hepatocellular Carcinoma Receptor B1 Polymorphisms are Associated with HBV-infected Chronic Liver Disease and Hepatocellular Carcinoma in a Korean Population

  • Kim, Kyoung-Yeon (Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Lee, Seung-Ku (Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Kim, Min-Ho (Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Cheong, Jae-Youn (Department of Gastroenterology, Genomic Research Center for Gastroenterology, Ajou University School of Medicine) ;
  • Cho, Sung-Won (Department of Gastroenterology, Genomic Research Center for Gastroenterology, Ajou University School of Medicine) ;
  • Yang, Kap-Seok (Macrogen Inc.) ;
  • Kwack, Kyu-Bum (Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University)
  • Published : 2008.12.31

Abstract

Erythropoietin-producing human hepatocellular carcinoma receptor B1 (EPHB1) is a member of the Eph family of receptor tyrosine kinases that mediate vascular system development. Eph receptor overexpression has been observed in various cancers and is related to the malignant transformation, metastasis, and differentiation of cancers, including hepatocellular carcinoma (HCC). Eph receptors regulate cell migration and attachment to the extracellular matrix by modulating integrin activity. EphrinB1, the ligand of EPHB1, has been shown to regulate HCC carcinogenesis. Here, we sought to determine whether EPHB1 polymorphisms are associated with hepatitis B virus (HBV)-infected liver diseases, including chronic liver disease (CLD) and HCC. We genotyped 26 EPHB1 single nucleotide polymorphisms (SNPs) in 399 Korean CLD, HCC, and LD (CLD+HCC) cases and seroconverted controls (HBV clearance, CLE) using the GoldenGate assay. Two SNPs (rs6793828 and rs11717042) and 1 haplotype that were composed of these SNPs were associated with an increased risk for CLD, HCC, and LD (CLD+HCC) compared with CLE. Haplotypes that could be associated with HBV-infected liver diseases by affecting downstream signaling were located in the Eph tyrosine kinase domain of EPHB1. Therefore, we suggest that EPHB1 SNPs, haplotypes, and diplotypes may be genetic markers for the progression of HBV-associated acute hepatitis to CLD and HCC.

Keywords

References

  1. Adams, R.H., Wilkinson, G.A., Weiss, C., Diella, F., Gale, N.W., Deutsch, U., Risau, W., and Klein, R. (1999). Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes. Dev. 13, 295-306 https://doi.org/10.1101/gad.13.3.295
  2. Brantley-Sieders, D.M., and Chen, J. (2004). Eph receptor tyrosine kinases in angiogenesis: from development to disease. Angiogenesis 7, 17-28 https://doi.org/10.1023/B:AGEN.0000037340.33788.87
  3. Brooks, P.C., Clark, R.A., and Cheresh, D.A. (1994a). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569-571 https://doi.org/10.1126/science.7512751
  4. Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., and Cheresh, D.A. (1994b). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157-1164 https://doi.org/10.1016/0092-8674(94)90007-8
  5. Calin, G.A., Trapasso, F., Shimizu, M., et al. (2005). Familial cancer associated with a polymorphism in ARLTS1. N. Engl. J. Med. 352, 1667-1676 https://doi.org/10.1056/NEJMoa042280
  6. Castano, J., Davalos, V., Schwartz, S., Jr., and Arango, D. (2008). EPH receptors in cancer. Histol. Histopathol. 23, 1011-1023
  7. Chang, Q., Jorgensen, C., Pawson, T., and Hedley, D.W. (2008). Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br. J. Cancer 99, 1074-1082 https://doi.org/10.1038/sj.bjc.6604676
  8. Clifford, N., Smith, L.M., Powell, J., Gattenlohner, S., Marx, A., and O'Connor, R. (2008). The EphA3 receptor is expressed in a subset of rhabdomyosarcoma cell lines and suppresses cell adhesion and migration. J. Cell. Biochem. (in press)
  9. Collier, J., and Sherman, M. (1998). Screening for hepatocellular carcinoma. Hepatology 27, 273-278 https://doi.org/10.1002/hep.510270140
  10. Dodelet, V.C., and Pasquale, E.B. (2000). Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19, 5614-5619 https://doi.org/10.1038/sj.onc.1203856
  11. Drake, C.J., Cheresh, D.A., and Little, C.D. (1995). An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J. Cell. Sci. 108(Pt 7), 2655-2661
  12. Dutt, A., and Beroukhim, R. (2007). Single nucleotide polymorphism array analysis of cancer. Curr. Opin. Oncol. 19, 43-49 https://doi.org/10.1097/CCO.0b013e328011a8c1
  13. Fu, X., Wang, Q., Chen, X., Huang, X., Cao, L., Tan, H., Li, W., Zhang, L., Bi, J., Su, Q., and Chen, L. (2008). Expression patterns and polymorphisms of PTCH in Chinese hepatocellular carcinoma patients. Exp. Mol. Pathol. 84, 195-199 https://doi.org/10.1016/j.yexmp.2008.04.002
  14. Himanen, J.P., and Nikolov, D.B. (2003a). Eph receptors and ephrins. Int. J. Biochem. Cell. Biol. 35, 130-134 https://doi.org/10.1016/S1357-2725(02)00096-1
  15. Himanen, J.P., and Nikolov, D.B. (2003b). Eph signaling: a structural view. Trends. Neurosci. 26, 46-51 https://doi.org/10.1016/S0166-2236(02)00005-X
  16. Hood, J.D., and Cheresh, D.A. (2002). Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91-100 https://doi.org/10.1038/nrc727
  17. Hu, N., Wang, C., Hu, Y., Yang, H.H., Giffen, C., Tang, Z.Z., Han, X.Y., Goldstein, A.M., Emmert-Buck, M.R., Buetow, K.H., Taylor, P.R., and Lee, M.P. (2005). Genome-wide association study in esophageal cancer using GeneChip mapping 10K array. Cancer Res. 65, 2542-2546 https://doi.org/10.1158/0008-5472.CAN-04-3247
  18. Huynh-Do, U., Stein, E., Lane, A.A., Liu, H., Cerretti, D.P., and Daniel, T.O. (1999). Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. EMBO. J. 18, 2165-2173 https://doi.org/10.1093/emboj/18.8.2165
  19. Kalo, M.S., and Pasquale, E.B. (1999). Signal transfer by Eph receptors. Cell Tissue Res. 298, 1-9 https://doi.org/10.1007/PL00008807
  20. Kikkawa, H., Kaihou, M., Horaguchi, N., Uchida, T., Imafuku, H., Takiguchi, A., Yamazaki, Y., Koike, C., Kuruto, R., Kakiuchi, T., Tsukada, H., Takada, Y., Matsuura, N., and Oku, N. (2002). Role of integrin alpha( v)beta3 in the early phase of liver metastasis: PET and IVM analyses. Clin. Exp. Metastasis 19, 717-725 https://doi.org/10.1023/A:1021356019563
  21. Kim, I., Ryu, Y.S., Kwak, H.J., Ahn, S.Y., Oh, J.L., Yancopoulos, G.D., Gale, N.W., and Koh, G.Y. (2002). EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. FASEB. J. 16, 1126-1128 https://doi.org/10.1096/fj.01-0805fje
  22. Kim, Y.U., Kim, S.H., Jin, H., Park, Y.K., Ji, M.H., and Kim, Y.J. (2008). The Korean HapMap Project Website. Genomics & Informatics 6, 91-94 https://doi.org/10.5808/GI.2008.6.2.091
  23. Kiyohara, C., and Yoshimasu, K. (2007). Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int. J. Med. Sci. 4, 59-71
  24. Klein, N.P., and Schneider, R.J. (1997). Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras. Mol. Cell. Biol. 17, 6427-6436 https://doi.org/10.1128/MCB.17.11.6427
  25. Kojima, T., Chang, J.H., and Azar, D.T. (2007). Proangiogenic role of ephrinB1/EphB1 in basic fibroblast growth factor-induced corneal angiogenesis. Am. J. Pathol. 170, 764-773 https://doi.org/10.2353/ajpath.2007.060487
  26. Kullander, K., and Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell. Biol. 3, 475-486 https://doi.org/10.1038/nrm856
  27. Lee, S.K., Kim, M.H., Cheong, J.Y., Cho, S.W., Yang, S.J., and Kwack, K. (2008). Integrin alpha V polymorphisms and haplotypes in a Korean population are associated with susceptibility to chronic hepatitis and hepatocellular carcinoma. Liver. Int. (in press)
  28. Lesnick, T.G., Papapetropoulos, S., Mash, D.C., Ffrench- Mullen, J., Shehadeh, L., de Andrade, M., Henley, J.R., Rocca, W.A., Ahlskog, J.E., and Maraganore, D.M. (2007). A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet. 3, e98 https://doi.org/10.1371/journal.pgen.0030098
  29. Lewis, C.M. (2002). Genetic association studies: design, analysis and interpretation. Brief Bioinform. 3, 146-153 https://doi.org/10.1093/bib/3.2.146
  30. Marrero, J.A. (2006). Hepatocellular carcinoma. Curr. Opin. Gastroenterol. 22, 248-253 https://doi.org/10.1097/01.mog.0000218961.86182.8c
  31. Ng, D., Hu, N., Hu, Y., Wang, C., Giffen, C., Tang, Z.Z., Han, X.Y., Yang, H.H., Lee, M.P., Goldstein, A.M., and Taylor, P.R. (2008). Replication of a genome-wide casecontrol study of esophageal squamous cell carcinoma .Int. J. Cancer. 123, 1610-1615 https://doi.org/10.1002/ijc.23682
  32. Oh, S.H., and Park, T.S. (2007). Regression Models for Haplotype-Based Association Studies. Genomics & Informatics 5, 19-23
  33. Oshima, T., Akaike, M., Yoshihara, K., Shiozawa, M., Yamamoto, N., Sato, T., Akihito, N., Nagano, Y., Fujii, S., Kunisaki, C., Wada, N., Rino, Y., Tanaka, K., Masuda, M., and Imada, T. (2008). Overexpression of EphA4 gene and reduced expression of EphB2 gene correlates with liver metastasis in colorectal cancer. Int. J. Oncol. 33, 573-577
  34. Pang, R.W., and Poon, R.T. (2007). From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology 72 Suppl 1, 30-44 https://doi.org/10.1159/000111705
  35. Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2001). Estimating the world cancer burden: Globocan 2000. Int. J. Cancer. 94, 153-156 https://doi.org/10.1002/ijc.1440
  36. Pasquale, E.B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38-52 https://doi.org/10.1016/j.cell.2008.03.011
  37. Sawai, Y., Tamura, S., Fukui, K., Ito, N., Imanaka, K., Saeki, A., Sakuda, S., Kiso, S., and Matsuzawa, Y. (2003). Expression of ephrin-B1 in hepatocellular carcinoma: possible involvement in neovascularization. J. Hepatol. 39, 991-996 https://doi.org/10.1016/S0168-8278(03)00498-7
  38. Stein, E., Huynh-Do, U., Lane, A.A., Cerretti, D.P., and Daniel, T.O. (1998). Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase. J. Biol. Chem. 273, 1303-1308 https://doi.org/10.1074/jbc.273.3.1303
  39. Storey, A., Thomas, M., Kalita, A., Harwood, C., Gardiol, D., Mantovani, F., Breuer, J., Leigh, I.M., Matlashewski, G., and Banks, L. (1998). Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393, 229-234 https://doi.org/10.1038/30400
  40. Sun, H.C., and Tang, Z.Y. (2004). Angiogenesis in hepatocellular carcinoma: the retrospectives and perspectives. J. Cancer. Res. Clin. Oncol. 130, 307-319 https://doi.org/10.1007/s00432-003-0530-y
  41. Sy, S.M., Wong, N., Lai, P.B., To, K.F., and Johnson, P.J. (2005). Regional over-representations on chromosomes 1q, 3q and 7q in the progression of hepatitis B virus-related hepatocellular carcinoma. Mod. Pathol. 18, 686- 692 https://doi.org/10.1038/modpathol.3800345
  42. Tang, X.X., Brodeur, G.M., Campling, B.G., and Ikegaki, N. (1999). Coexpression of transcripts encoding EPHB receptor protein tyrosine kinases and their ephrin-B ligands in human small cell lung carcinoma. Clin. Cancer Res. 5, 455-460
  43. Truelove, A.L., Oleksyk, T.K., Shrestha, S., Thio, C.L., Goedert, J.J., Donfield, S.M., Kirk, G.D., Thomas, D.L., O'Brien, S.J., and Smith, M.W. (2008). Evaluation of IL10, IL19 and IL20 gene polymorphisms and chronic hepatitis B infection outcome. Int. J. Immunogenet. 35, 255-264 https://doi.org/10.1111/j.1744-313X.2008.00770.x
  44. Valentini, F.A., Nelson, P.P., and Besson, G.R. (2003). Detrusor activity and motor neurons firing during micturition: analysis by means of modeling of urodynamic tracings. Ann. Readapt. Med. Phys. 46, 594-600 https://doi.org/10.1016/j.annrmp.2003.04.002
  45. Velazquez, R.F., Rodriguez, M., Navascues, C.A., Linares, A., Perez, R., Sotorrios, N.G., Martinez, I., and Rodrigo, L. (2003). Prospective analysis of risk factors for hepatocellular carcinoma in patients with liver cirrhosis. Hepatology 37, 520-527 https://doi.org/10.1053/jhep.2003.50093
  46. Xiong, X.D., Fang, J.H., Qiu, F.E., Zhao, J., Cheng, J., Yuan, Y., Li, S.P., and Zhuang, S.M. (2008). A novel functional polymorphism in the Cdc6 promoter is associated with the risk for hepatocellular carcinoma. Mutat. Res. 643, 70-74 https://doi.org/10.1016/j.mrfmmm.2008.06.006
  47. Yoon, S.Y., Jeong, M.J., Yoo, J., Lee, K.I., Kwon, B.M., Lim, D.S., Lee, C.E., Park, Y.M., and Han, M.Y. (2001). Grb2 dominantly associates with dynamin II in human hepatocellular carcinoma HepG2 cells. J. Cell. Biochem. 84, 150-155 https://doi.org/10.1002/jcb.1275
  48. Yoon, Y.J., Chang, H.Y., Ahn, S.H., Kim, J.K., Park, Y.K., Kang, D.R., Park, J.Y., Myoung, S.M., Kim do, Y., Chon, C.Y., and Han, K.H. (2008). MDM2 and p53 polymorphisms are associated with the development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Carcinogenesis 29, 1192-1196 https://doi.org/10.1093/carcin/bgn090
  49. Zeng, Z.Y., Xiong, W., Zhou, Y.H., Li, X.L., and Li, G.Y. (2006). Advances in high-density whole genome-wide single nucleotide polymorphism array in cancer research. Ai Zheng 25, 1454-1458