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Discovering Novel Genes of Poultry in Genomic Era
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ABSTRACT : Using bioinformatic tools for searching the massive genome databases, it is possible to identify new
genes in few minutes for initial discoveries based on evolutionary conservation, domain homology, and tissue
expression patterns, followed by further verification and characterization using the bench—top works. The devel—
opment of high—density two—dimensional arrays has allowed the analysis of the expression of thousands of genes
simultaneously in the humans, mice, rats, yeast, and bacteria to elucidate the genes and pathways involved in phys—
iological processes. In addition, rapid and automated protein identification is being achieved by searching protein and
nucleotide sequence databases directly with data generated from mass spectrometry. Recently, analysis at the bio—
chemical level such as biochemical screening and metabolic profiling (Biochemical genomics) has been introduced
as an additional approach for categorical assignment of gene function. To take advantage of recent achievements in
computational approaches for facilitated gene discoveries in the avian model, chicken expression sequernce tags
(ESTs) have been reported and deposited in the international databases. By searching EST databases, a chicken
heparanase gene was identified and functionally confirmed by subsequent experiments. Using combination of sub—
tractive hybridization assay and Genbank database searches, a chicken heme—binding protein family (cSOUL/HBP)
was isolated in the retina and pineal gland of domestic chicken and verified by Northern blot analysis. Microarrays
have identified several host genes whose expression levels are elevated following infection of chicken embryo
fibroblasts (CEF) with Marek’ s disease virus (MDV). The ongoing process of chicken genome projects and new
discoveries and breakthroughs in genomics and proteomics will no doubt reveal new and exciting information and
advances in the avian research.
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INTRODUCTION complete genomic sequences of more than two dozens

organisms including yeast Saccharomyces cerevisiae

A project with the goal of determining the complete and nematode Caenorhabditis elegans are already

nucleotide sequence of the human genome was first
formally proposed in 1985 (1). The Human Genome
Project (HGP) in 1990 was officially initiated in the
United States under the direction of the National Insti—
tutes of Health and the U.S. Department of Energy. In
1998, Celera also announced plan for completing the
human genome sequence. At the present time, nearly
complete genomic sequences of 2.91—billion base pair
(bp) consensus sequence of the euchromatic portion

of the human genome was revealed (2, 3). In addition,

available. This progress became possible through the
largely automated sequencing of libraries of genomic
DNA and expressed sequence tags (ESTs) that rep—
resent fragments of transcribed genes from diverse
tissues. The ESTs provide a rapid and reliable method
for gene discovery as well as a resource for the
large—scale analysis of gene expression pattern of
known and unknown genes at specific stages of
development and in specific tissues (4, 5). These

genome sequences are now being used as a frame—
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work to allow the identification of novel genes and
mutations involved in diseases, and investigation of
biological processes such as metabolic pathways, sig—
nal networks, functional classes and protein fold types
by the aid of intensified computational approaches. As
genome sequences are nearly completed, the field of
functional genomics seeks to devise and apply tech—
nologies that utilize the massive body of sequence
information to achieve the full identification of novel
genes and encoded proteins simultaneously, while
traditional methodologies study a small number of
gene at a time. Such new genomic and proteomic
technologies are aimed at (a) discovering new genes
and proteins, (b) quantifying and analyzing gene and

protein expression, and (c) assigning functionality.

NOVEL GENE DISCOVERIES BY
COMPUTATIONAL GLOBAL APPROACHES

Paradigm shift in research of gene discovery cur—
rently is underway. Traditional studies of identification
of novel genes are based upon protein purification and
protein—protein interaction assays (6). Following the
advent of recombinant DNA technology, the new
genes have been discovered by using low—stringency
hybridization, degenerative PCR, differential cloning
(subtraction and differential display) (7, 8), and posi—
tional cloning following chromosome walking (9). The
searches for interacting protein were achieved by
expression cloning methods based on ligand or anti—
body binding (10, 11, 12) and yeast two—hybrid
interaction assay (13, 14, 15). These approaches have
been effective but labor—intensive for initial gene dis—
covery and linking function of proteins to genes. With
near completion of genome sequences and major
advances in bioinformatic search tools available on the
Internet (Table 1), these genomic and technological
revolution have prompted the emergence of new
research paradigms for the identification of novel
genes and proteins through easy accesses to massive
resources to genome and protein databases. Utilizing

the unprecedented power of modern computing tools,

the new approaches take few minutes for initial dis—
coveries of new genes compared to time—consuming
the laboratory works. Furthermore, performing
changes the expectation or threshold values in com—
putational searches can replace the labor—intensive
and tedious stringency control procedures in the tra—
ditional cloning methods based on sequence matching
(e.g. degenerate PCR and low—stringency hybridiza—

tion).

DATABASE MINING FOR NOVEL GENES
BY HOMOLOGY SEARCHES

The use of databases to determine sequence simi—
larities of gene products has facilitated the discovery
of novel homologs in various organisms. This idea was
based on the concept that genes are present in families
with conservation in structure and function in diverse
organisms through the evolution of simple organisms
into complex ones (16). To achieve efficient compari—
son of DNA or protein sequences, a variety of paired
sequence comparison programs using different scoring
matrices have been developed for aligning individual
sequences with a catalogued sequence database. For
example, the Basic Local Alignment Search Tool
(BLAST) and other related programs are being used
for gene sequence analysis and the deduction of their
functions (17, 18, 19) (Table 1). Using the computa—
tional searches in the GenBank, several G protein—
coupled receptors have been identified based on
sequence conservation in the transmembrane region
(20, 21). Four novel leucine—rich repeat—containing,
G protein—coupled receptors (LGR) were isolated
from Drosophila and snail Lymnanei stagnalis using
primitive homologous sequences from vertebrate gly —
coprotein receptors as queries for the GenBank search
(22, 23). A number of genes homologous to mam—
malian glycoprotein hormone receptors were identified
from nematode by applying the same evolutionary
conservation approach (24). Similar bioinformatic
searches have identified multiple cytokines (25, 26,
27, 28) and a large group of human Toll—like recep—
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Table 1. Bioinformatic tools and useful web links for new gene discovery
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Name

Description/Features

Web Site

The EST Machine

Directory of links to selected bioinformatic

resources for EST analysis

http://www.tigem.it/ESTmachine.html

GENSCAN Predict genes in genomic DNA based on prob—  http://CCR—
abilistic models in gene structure 081.mit.edw/GENESCAN html
NetGene Predict splice sites in vertebrate genes http://130.225.67.199/services/Net—
Gene/index.
NetGene Predict splice sites in vertebrate genes http://130.225.67.199/services/Net—
Gene/index.html
Genie Identification of multi—exon genes in Droso— http://www fruitfly.org/seq_tools/genie.ht
phila genomic sequences ml
FGENES Predict genes and exons by using pattern—  http://genomic.sanger.ac.uk/gf/gf.html

based structure

ExPASy Molecular
Biology Server

Links to databases, tools, and other molecular

biology resources

Http://www.expasy.ch/

PROSITE A database of protein families and domains Http://www.expasy.ch/prosite/

Pfam Classification of predicted proteins into protein http://pfam.wustl.edu/
domain families

MEME Detect motifs (conserved sequence patterns) http://www.sdsc.edu/MEME/meme/webs
by statistical technique ite/intro.html

Blocks WWW A service for biological sequence analysis by http://www.blocks.fhcre.org/blocks/

Server pattern—searching method or statistical method

PRINTS A compendium of protein fingerprints http://www.bioinf.man.ac.uk/dbbrowser/P

(Protein Finger—

print Database)

RINTS/PRINTS.html

eMOTIFs Database of profile and sequence motifs for http://dna.stanford.edu/identify/
representing structural and functional aspects
of proteins. Forms motifs or subsets of aligned
sequence

SMART A simple modular architecture research tool for http://smart.embl—heidelberg.de/
the identification of signaling domains

UniGene A nonredundant set of gene—oriented clusters.  http://www.ncbi.nlm.nih.gov/Web/Newslt

r/aug96.html#advance

STACK Comprehensive representation of the sequence http://www.sanbi.ac.za/Dbases.html
of each of the expressed genes in the human
genome

TIGR A collection of databases containing DNA and http://www.tigr.org/tdb/index.html
protein sequences, gene expressions, cellular
roles, protein families, and taxonomic data

Transfac A relational database of transcriptional factor http://transfac.gbf.de/TRANSFAC

binding site and transcription factors
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Table 1. Continued
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Name Description/Features Web Site
TESS Finds potential transcription—factor—binding http://cbil.upenn.edu/tess
sites in DNA sequence
TSSG Recognizes human Pol II promoter region and http://genomic.sanger.ac.uk/gf/HELP/tss
transcription initiation sites w.html
GRAIL Identification of multi—exon genes http://avalon.epm.ornl.gov/Grail—
in/EmptyGrailForm
Polyadq Identification of a true poly (A) signal http://sciclio.cshl.org/mzhanglab/abaska/p
olyadq_form.htm!
Genotator A tool package runs a series of sequence http//www.fruitfly.org/~nomi/genota—
analysis tools and displayed color—coded tor—paper.html
sequence annotations in a browser
NJ tree Molecular phylogenetic tree by neighbor—join— http://www.biophys.kyoto—
ing method n.ac.jp/maketree2.html
SignalP Prediction of signal peptide sequence http://www.cbs.dtu.dk/services/SignalP/
PSORT Prediction of protein sorting signals and local— http://psort.nibb.ac.jp/
ization sites in amino acid sequences
COILS Prediction of coiled coil regions in proteins http://www.ch.embnet.org/software/COI
LS_form.html
TMHMM Prediction of transmembrane helices in proteins  http://www.cbs.dtu.dk/services/TMHMM
-1.0/
SCOP Classification of protein database for analysis of http://scop.mrc—Ilmb.cam.ac.uk/scop/
sequences and structures
TopPred2 Topology prediction of membrane proteins http://www.sbc.su.se/~erikw/toppred2/

DNA motif and

structure tools

Collection of links to databases, tools, and other

molecular biology resources

http://dapsas.weizmann.ac.il/bio_tools/dn

a—tools.html#orf

tors (29, 30, 31). Alternatively, if limited significant
homology is observed for query sequence using the
similarity methods, the sequence can be scanned by
other methods which search for shorter regions of
conservation that represent conserved sequence
motifs (32). These searches employ tools such as
eMOTIFs, BLOCKs and PRINTS. Taking advantage of
this computational approach, two novel relaxin/insulin—
like factors (RIFs) sharing significant homology with
relaxin in the putative mature portion of these
polypeptides were identified (33). Based on domain
conservation, GenBank searches have led to isolation

of an intracellular apoptosis mediator DEFT (Death

EFfector in Testis) that is abundantly expressed in the
testis (34). The structure of a gene and protein iden—
tified by homology searches can be predicted using
tools such as FGENES, Pfam, SMART and TMHMM
(Table 1).

COMPREHENSIVE GENE-EXPRESSION
PROFILING

Gene—expression profiling, which monitors the
expression of thousands of genes simultaneously, can

be accomplished by several techniques including
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cDNA arrays, oligonucleotide arrays, serial analysis of
gene expression (SAGE) and differential display. The
development of high—density two—dimensional arrays
of chemically synthesized molecules on the various
foundations (cDNA arrays, oligonucletide arrays,
electrokinetic arrays and fiberoptic arrays) has
allowed the analysis of the expression of thousands of
genes simultaneously (35). Chip—based quantitative
RNA expression experiments are being applied to the
study of humans, mice, rats, yeast, and bacteria to
understand the genes and pathways involved in physi—
ological processes. For example, DNA chips designed
for analyzing the expression levels of >6,000 genes in
S. cerevisiae identified more than 400 RNAs whose
levels are significantly changed as the cell progresses
through the cell cycle (36). High—density arrays have
been used to identify yeast genes whose expression
depends on transcriptional initiation factors, to profile
gene expression changes following activation of mouse
T cells (37), and to explore and compare signal trans—
duction pathway (38, 39). Also, DNA arrays have
been employed to identify human genes involved in the
pathology of diseases such as rheumatoid arthritis and
inflammatory bowel disease (40), to compare gene
expression in cells expressing either a transformed or
a nontransformed phenotype (41, 42), and to study
hematopoietic differentiation (43). In combination with
cluster analysis, microarrays identified variation in
gene expression patterns of human cancers as a
means to classify solid tumors (44). Microarray
analysis is also widely recognized as a key tool in drug
discovery (45) and is being used to characterize
human genetic variation (single nucleotide polymor—
phisms, or SNPs) (46). Extensive stretches of DNA
sequence can be screened at once, and more than
4,000 common genetic variations have been found
across the human genome (46). These small differ—
ences can be useful markers in subsequent studies to
identify the genes responsible for particular traits and
to analyze the sequences of important genes to
uncover predisposition to common disease or the effi—
cacy and safety of therapies. In general, the bench—

top works such as Northern hybridization for selected

genes are used to confirm gene expression changes

first observed on microarrays.

COMPREHENSIVE PROTEIN DISCOVERY
USING MASS SPECTROMETRY AND
COMPUTATIONAL SEARCHES

The elucidation of an organism’s genome and the
data created by whole—genome sequencing has stim—
ulated the development of proteomics by providing a
sequence infrastructure for the identification of novel
proteins and their functions. The term proteomics
describes the ability to apply global (proteom—wide or
system—wide) experimental approaches to isolate and
assess protein function (47). Proteomics has emerged
as a new experimental approach because in part mass
spectrometry has simplified protein analysis and char—
acterization. In addition, several important recent
innovations in protein separations using high perfor—
mance liquid chromatography (HPLC) and capillary
electrophoresis (CE), along with recent advances in
mass spectrometry instrumentation, display technolo—
gy, biochips, imaging, and automation have revolution—
ized proteomics (48, 49, 50, 51, 52). Rapid and auto—
mated protein identification can be achieved by
searching protein and nucleotide sequence databases
directly with data generated from two—dimensional gel
electrophoresis analysis, followed by peptide mass
fingerprinting with MALDI—-TOF (matrix—assisted
laser—desorption—ionization—time—of—flight) mass
spectrometry. An alternative approach based on the
proteolytic digestion of protein mixtures, which is fol—
lowed by reversed—phased liquid chromatography to
separate or partially fractionate the complex peptide
mixture and direct introduction into a tandem mass
spectrometer, has been developed (47). This
approach reduces the reliance on SDS—PAGE to sep—
arate proteins, provides a more flexible strategy for
proteolytic digestion and manipulation, and can
enhance the sensitivity of mass spectrometry. Using
such approach, at least ten proteins which were not

observed by 2—D gel electrophoresis were isolated in
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the yeast ribosome (53). Furthermore, modern mass
spectrometers can provide sufficient information to
allow unique recognition of protein fragments as well
as detection of secondary modifications such as phos—
phorylation and glycosylation. Also, integration of a
genome database with protein coprecipitation and
global yeast two—hybrid interaction approaches to
enrich proteins of interest should allow one to assem—
ble comprehensive interaction maps of genomes (54,
55) and for routine identification of downstream com—
ponents of cell surface receptors in mammalian cells
(56).

GENE AND FUNCTIONAL PROTEIN
DISCOVERIES VIA METABOLIC PROFILING

Although undoubtedly very powerful, expression
arrays and mass spectrometry approaches has limita—
tions that they do not necessarily pinpoint the function
of a gene (57). For example, a change in mRNA levels
observed in the expression array does not necessarily
mean that the corresponding gene actually has a func—
tion within the biological process. Information from
expression arrays always needs to be confirmed by
further experimentation before an assignment of
function of genes. Similarly, at the proteomic level,
- even though higher levels of a protein are detected, it
does not necessarily mean that more activity will be
found within the structural, metabolic or signaling net—
work associated with this protein. Therefore, analysis
at the biochemical level such as biochemical screening
and metabolic profiling (Biochemical genomics) was
introduced as an additional approach for categorical
assignment of gene function. Using in vitro biochemical
screening approach, Martzen et al. demonstrated that
tRNA ligase and 2’ —phosphodiesterase, two known
yveast tRNA splicing activities, were detected only in
the pools known to contain the respective GST—ORF
fusion proteins (58). Metabolic profiling technologies
are also being used to investigate the metabolic con—
sequence of a particular mutation or targeted alteration

of gene activity in plant and mammalian systems.

Sophisticated gas chromatography —mass spectrome—
try techniques detected around 150 compounds in
developing potato tubers (59), probed the metabolism
of Arabidopsis leaves and distinguished some 326
distinct compounds (60). Analysis for volatile organic
compounds by gas chromatography—mass spectrom—
etry in liquid and gaseous samples from human urine
has led to identification of 34 compounds (59). Profil—
ing of bile acids, cholesterol, and triglycerides formed
as a part of a metabolic study conducted on mice that
lacked a bile—acid receptor (61). In this study, combi—
national approaches in histology, gene—expression
profiling and biochemical profiling contributed to a
better understanding of how altered gene function can
influence the cell structure and metabolic function of

an organism (61).

DISCOVERING NOVEL GENES OF
POULTRY IN GENOMIC ERA

The chicken genetic map consists of about 235
genes—based markers or about 12% of the total num—
ber of DNA markers (62). To take advantage of
recent achievements in computational approaches for
facilitated gene discoveries in the avian model, several
chicken ESTs such as an activated T—cell ESTs (63),
bursal lymphocytes ESTs (64) and a white Leghorn
chicken embryo ESTs (65) have been reported and
deposited in the international databases. Currently,
there are two publicly available chicken EST databases
(http://www.chickest.udel.edu; http://genetics.hpi.uni—
hamburg.de). By searching EST databases with the
cDNA sequence of human heparanase as a query
sequence, a chicken heparanase gene was identified
and functionally confirmed by subsequent experiments
(66). Using combination of subtractive hybridization
and Genbank database searches (nr; via blastx and
blatn), a chicken heme—binding protein family
(cSOUL/HBP) was isolated in the retina and pineal
gland of domestic chicken, Gallus gallus, and verified
by Northern blot analysis (67). Morgan et al. utilized

Microarrays containing 1,126 nonredundant cDNAs
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selected from a chicken activated T—cell expressed
sequence tag database (63) to investigate changes of
host cell gene expression that accompany infection of
chicken embryo fibroblasts (CEF) with Marek’s dis—
ease virus (MDV) (68). Elevated host genes by MDV
vial infections include macrophage inflammatory pro—
tein, interferon response factor 1, interferon—inducible
proteih, quiescence—specific protein, thymic shared
antigen 1, major histocompatibility complex (MHC)
class I, MHC class II, ?2—microglobulin, clusterin,
interleukin—13 receptor alpha chain, ovotransferrin, a
serine/threonine kinase, and avian leucosis virus sub—

group J glycoprotein.

CONCLUSION

We live in an age of gene discovery. As genome
projects of chicken progress and the availability of
near complete genome sequences of many species
including human, the massive archives in the databases
represent a golden opportunity to discover novel
genes and proteins. The current shift in the research
from one gene at a time to a global approach has led
emergence of new methods to integrate the explosion
of knowledge on gene sequences, transcript expres—

sion profiles, and protein functions and interactions.

Query nucleotide or
amino acid

q

Disease-specific Normal tissue Protein separation
tissue (or cell) or cell)
mRNA | | oligonucleotide Mass Metabolic
spectrometry| | profiling
cDNA probe \‘\‘
Homology search/
Motifs or domain search

Subtractive Microarrays
SAGE hybridization L—Yl
DNA and protein

|| seq ysis/
Gene and protein
database

¥
Structural analysis
of gene and protein
)
Identification of a novel
gene and protein
+
Confirmation by
benchtop works
Fig. 1. The working flow of funcional genomic and pro—
teomic.

Through comparative sequence analysis, expression
arrays, mass spectrometry and metabolic profiling,
novel chicken genes and their functions can be
revealed in next few years. The working flow of func—
tional genomics and proteomics was described in Fig.
1. The ongoing discoveries and breakthroughs are
genomic and proteomics will no doubt reveal new and
exciting information and advances in the avian

research.
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