• Title/Summary/Keyword: vibrating .sample

Search Result 205, Processing Time 0.021 seconds

Enhancement of Lowsintering Temperature and Electromagnetic Properties of (NiCuZn)-Ferrites for Multilayer Chip Inductor by Using Ultra-fine Powders (초미세 분말합성에 의한 칩인덕터용 (NiCuZn)-Ferrites의 저온소결 및 전자기적 특성 향상)

  • 허은광;강영조;김정식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2002
  • In this study, two different (NiCuZn)-ferrite which were fabricated by using ultra-fine powders synthesized by the wet processing and conventionally commercialized powder, were investigated and compared each other in terms of the low temperature sintering and electromagnetic properties. Composition of x and w in $(Ni_{0.4-x}Cu_xZn_{0.6})_{1+w}(Fe_2O_4)_{1-w}$ were controlled as 0.2 and 0.03, respectively. The sintering temperature were $900^{\circ}C$ for ultra-fine powders by way of initial heat treatment and $1150^{\circ}C$ for commercialized powders. The (NiCuZn)-ferrite by ultra-fine powders showed love. sintering temperature than that of commercialized powders by over $200^{\circ}C$, and excellent electromagnetic properties such as the quality factor which is a important factor in the multi-layered chip inductor. In addition, characteristics of B-H hysteresis, crystallinity, microstructure and powder morphology were analyzed by a vibrating sample method(VSM), x-ray diffractometer(XRD), transmission electron microscope (TEM) and scanning electron microscope(SEM).

  • PDF

Simultaneously Enhanced Magnetic and Ferroelectric Properties of $Bi_{0.9}Dy_{0.1}Fe_{0.97}Co_{0.03}O_3 $ compound

  • Yu, Yeong-Jun;Hwang, Ji-Seop;Park, Jeong-Su;Lee, Ju-Yeol;Gang, Ji-Hun;Lee, Gwang-Hun;Lee, Bo-Hwa;Kim, Gi-Won;Lee, Yeong-Baek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.147-147
    • /
    • 2013
  • Multiferroic material $BiFeO_3$ (BFO) is a typical multiferroic material with a room-temperature magnetoelectric coupling in view of high magnetic- and ferroelectric-ordering temperatures (Neel temperature $T_N$ ~ 647 K and Curie temperature TC ~1,103 K). Rare-earth ion substitution at the Bi sites is very interesting, which induces suppressed volatility of the Bi ion and improved ferroelectric properties. At the same time, the Fe-site substitution with magnetic ions is also attracting, since the enhanced ferromagnetism was reported. In this study, BFO, $Bi_{0.9}Dy_{0.1}FeO_3$ (BDFO), $BiFe_{0.97}Co_{0.03}O_3$ (BFCO) and $Bi_{0.9}Dy_{0.1}Fe_{0.97}Co_{0.03}O_3 $ (BDFCO) compounds were prepared by conventional solid-state reaction and wet-mixing method. High-purity $Bi_2O_3$, $Dy_2O_3$, $Fe_2O_3$ and $Co_3O_4$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ for 24 h. The samples were immediately put into an oven, which was heated up to 800oC and sintered in air for 1 h. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The electric polarization was measured at room temperature by using a standard ferroelectric tester (RT66B, Radiant Technologies). Dy and Co co-doping at the Bi and the Fe sites induce the enhancement of both magnetic and ferroelectric properties of $BiFeO_3$.

  • PDF

Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application (하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자)

  • Lee, Eun-Hee;Choa, Yong-Ho;Kim, Chang-Yeoul
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

Structural and Magnetic Properties of (CoFe2O4)0.5(Y3Fe5O12)0.5 Powder

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae;Lee, Sung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.80-83
    • /
    • 2005
  • Cobalt ferrite and garnet powders were grown using a conventional ceramic method in two different ways for understanding the magnetic interaction between structurally different materials. Structures of these powders were investigated by using an X-ray diffractometer (XRD) and the magnetic interaction between iron ions and the magnetic properties of the powders were measured by a $M\ddot{o}ssbauer$ spectroscopy and a vibrating sample magnetometer (VSM), respectively. The result of the XRD measurement showed that the annealing temperature higher than $1200^{\circ}C$ was necessary to grow a $(CoFe_2O_4)_{0.5}(Y_3Fe_5O_{12})_{0.5}$ powder. $M\ddot{o}ssbauer$ spectra for the powders grown separately and mixed mechanically consisted of sub-spectra of cobalt ferrite and garnet, however, powders annealed together had an extra sub-spectrum, which was related with the magnetic interaction between the grain surface of cobalt ferrite and the one of the garnet. In case of annealing the powders at the temperature large enough to crystallize them, raw chemicals became fine cobalt ferrite and garnet particles at first and then these fine particles were aggregated and formed large grains of ferrite powders. The result of the VSM measurement showed that the powders prepared at $1200^{\circ}C$ had the similar saturation magnetization and the coercivity regardless of the preparation method.

Magnetic Properties of Bismuth Substituted Terbium Iron Garnet (Tb3-xBixFe5O12(x=0.5, 0.75, 1.0, 1.25)의 자기적 특성 연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.245-248
    • /
    • 2006
  • [ $Tb_{3-x}Bi_xFe_5O_{12}$ ] has been studied by x-ray diffraction (XRD), vibrating sample magnetometer, $M\"{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The lattice constants increase linearly with increasing bismuth concentration. With increase of bismuth substitution, the $N\'{e}el$ temperature increases but the compensation temperature decreases. We have observed the negative magnetization in Bi-TbIG system which has not been reported in garnet systems. $M\"{o}ssbauer$ spectra were measured at various temperatures from 4.2 K to $N\'{e}el$ temperature. The isomer shifts at room temperature are ${\sim}0.26mm/s$ which is consistent with ferric state.

Synthesis and M$\ddot{o}$ssabuer Spectroscopy Studies of $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ Nano-Particles

  • Uhm, Young Rang;Lee, Jae-Gwang;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.16-18
    • /
    • 2000
  • The garnets $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ ($\chi$=0.0, 0.25, 0.5, 0.75 and 1.0) have been studied by x-rays, electron microscopy, ferromagnetic resonance, vibrating sample magnetometer and Mossbauer spectroscopy, Ultra-fine polycrystalline cubic samples have been prepared by a melt-salt routed sol-gel method. The Mossbauer spectra consist of two sets of six-line patterns corresponding to $Fe^{3+}$ at the tetrahedral 24(d) and octahedral 16(a) sites. Magnetic hyperfine fields of $Nd_{0.5}Bi_{0.5}Y_2Fe_5O_{12}$ at 12 K are found to be 548 kOe (octahedral site) and 475 kOe (tetrahedral site), respectively, It is found that Debye temperatures for the tetrahedral and octahedral sites of $Nd_{0.75}Bi_{0.25}Y_2Fe_5O_{12}$ are $\theta_{tet}=436$ K and $\theta_{oct}=285$ K, respectively, The iron ions at both sites are highly covalent ferric. The Nel temperature decreases linearly with Bi concentration, from 630 K fur $\chi$=0.0 to 600 K for $\chi$=1.0, suggesting that the superexchange interaction for the Nd-O-Fe link is stronger than that for the Bi-O-Fe link. As a consequence, the coercivity of $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ drastically decreases and the magnetization remains almost constant as x increases.

  • PDF

Fabrication and Magnetic Properties of Mg and BaFe12O19 Ferromagnetic Composite Powders by Mechanical Alloying (기계적합금화법에 의한 Mg-BaFe12O19 계 강자성 복합분말의 제조 및 자기특성)

  • Lee, Chung-Hyo
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Fabrication of a ferromagnetic composite powder for the magnesium and BaFe12O19 system by mechanical alloying (MA) is investigated at room temperature. Mixtures of Mg and BaFe12O19 powders with a weight ratio of Mg:BaFe12O19 = 4:1, 3:2, 2:3 and 1:4 are used. Optimal MA conditions to obtain a ferromagnetic composite with fine microstructure are investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that Mg-BaFe12O19 composite powders in which BaFe12O19 is dispersed in Mg matrix are successfully produced by MA of BaFe12O19 with Mg for 80 min. for all compositions. Magnetization of Mg-BaFe12O19 composite powders gradually increases with increasing the amounts of BaFe12O19, whereas coercive force of MA powders gradually decreases due to the refinement of BaFe12O19 powders with MA time for all compositions. However, it can be seen that the coercivity of Mg-BaFe12O19 MA composite powders with a weight ratio of Mg:BaFe12O19=4:1 and 3:2 for MA 80 min. are still high, with values of 1260 Oe and 1320 Oe compared to that of Mg:BaFe12O19=1:4. This clearly suggests that the refinement of BaFe12O19 powders during MA process for Mg:BaFe12O19=4:1 and 3:2 tends to be suppressed due to ductile Mg powders.

Crystal Structure and Magnetic Properties of Sodium-Iron Phosphates NaFe0.9Mn0.1PO4 Cathode Material

  • Seo, Jae Yeon;Choi, Hyunkyung;Kim, Chul Sung;Lee, Young Bae
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1863-1866
    • /
    • 2018
  • The sodium-iron phosphate maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was synthesized using the ball mill method. The crystal structure and magnetic properties of the prepared materials were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and $M{\ddot{o}}ssbauer$ spectroscopy. Structural refinement of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was analyzed using the FullProf program. From the XRD patterns, the crystal structure of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was found to be orthorhombic with the space group Pmnb. The lattice parameters of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ are as follows: $a_0=6.866{\AA}$, $b_0=8.988{\AA}$, $c_0=5.047{\AA}$, and $V=311.544{\AA}^3$. Maricite-$NaFePO_4$ has an edge-sharing structure that consists of $FeO_6$ octahedral. Under an applied field of 100 Oe, the temperature dependences of zero-field-cooled (ZFC) and field-cooled (FC) curves were measured from 4.2 to 295 K. $M{\ddot{o}}ssbauer$ spectra were also recorded at various temperatures ranging from 4.2 to 295 K. We thus confirmed that the $N{\acute{e}}el$ temperature of $NaFe_{0.9}Mn_{0.1}PO_4$ ($T_N=14K$) was lower than that of maricite-$NaFePO_4$ ($T_N=15K$).

Application of Nanoparticles for Materials Recognition Using Peptide Phage Display Technique - Part II: Magnetic Bio-panning Using Fe3O4 Nanoparticles (Peptide phage display 기술을 이용한 나노입자의 materials recognition 응용 - Part II: Fe3O4 나노입자를 이용한 magnetic bio-panning)

  • Lee, Chang-Woo;Kim, Min-Jung;Standaert, R.;Kim, Seyeon;Owens, E.;Yan, Jun;Choa, Yong-Ho;Doktycz, M.;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.131-134
    • /
    • 2008
  • The magnetism of$Fe_3O_4$ nanoparticles was applied to magnetic bio-panning process for finding specific sequences against $Fe_3O_4$ crystal phase. Vibrating sample magnetometer (VSM) measurement showed that the coercivity of 30 Oe and the saturation magnetization of 55 emu/g were sufficient in controlling particle movement and magnetizing particles in the media, respectively. This ferrimagnetism of nanoparticles practically enhanced panning efficiency by exaggerating centrifuge step and preventing particle loss. Sequencing results showed that histidine which was commonly found in peptide sequences played an important role in the binding onto $Fe_3O_4$ nanoparticle surface. However, various possible motifs were also observed from several neighboring amino acids of histidine.

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF