Browse > Article
http://dx.doi.org/10.3938/jkps.73.1863

Crystal Structure and Magnetic Properties of Sodium-Iron Phosphates NaFe0.9Mn0.1PO4 Cathode Material  

Seo, Jae Yeon (Department of Physics, Kookmin University)
Choi, Hyunkyung (Department of Physics, Kookmin University)
Kim, Chul Sung (Department of Physics, Kookmin University)
Lee, Young Bae (Nano Technology Research Center, Konkuk University)
Abstract
The sodium-iron phosphate maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was synthesized using the ball mill method. The crystal structure and magnetic properties of the prepared materials were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and $M{\ddot{o}}ssbauer$ spectroscopy. Structural refinement of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was analyzed using the FullProf program. From the XRD patterns, the crystal structure of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was found to be orthorhombic with the space group Pmnb. The lattice parameters of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ are as follows: $a_0=6.866{\AA}$, $b_0=8.988{\AA}$, $c_0=5.047{\AA}$, and $V=311.544{\AA}^3$. Maricite-$NaFePO_4$ has an edge-sharing structure that consists of $FeO_6$ octahedral. Under an applied field of 100 Oe, the temperature dependences of zero-field-cooled (ZFC) and field-cooled (FC) curves were measured from 4.2 to 295 K. $M{\ddot{o}}ssbauer$ spectra were also recorded at various temperatures ranging from 4.2 to 295 K. We thus confirmed that the $N{\acute{e}}el$ temperature of $NaFe_{0.9}Mn_{0.1}PO_4$ ($T_N=14K$) was lower than that of maricite-$NaFePO_4$ ($T_N=15K$).
Keywords
Sodium-iron battery; $M{\ddot{o}}ssbauer$ spectroscopy; Antiferromagnetic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Kim et al., Energy Environ. Sci. 8, 540 (2015).   DOI
2 Y. Fang, Q. Liu, L. Xiao, X. Ai, H. Yang and Y. Cao, ACS Appl. Mater. Interfaces 7, 7977 (2015).
3 B. U. Ko, H. Choi, T. Kouh, S. J. Kim and C. S. Kim, AIP Adv. 7, 055715 (2017).   DOI
4 M. Shin and J. Son, J. Korean Phys. Soc. 72, 703 (2018).   DOI
5 W. J. Kwon, I. K. Lee, C. H. Rhee and C. S. Kim, J. Appl. Phys. 111, 07E139 (2012).   DOI
6 T. Boyadzhieva, V. Koleva and R. Stoyanova, Phys. Chem. Chem. Phys. 19, 12730 (2017).   DOI
7 N. T. M. Hien, J. H. Chung, X. Chen, W. J. Kwon, I. Yan and C. S. Kim, J. Raman Spectrosc. 46, 1161 (2015).   DOI
8 M. M. Rahman, I. Sultana, S. Mateti, J. Liu, N. Sharma and Y. Chen, J. Mater. Chem. A 5, 114 (2017).
9 J. K. Hwang et al., J. Power Source 377, 80 (2018).   DOI
10 S. M. Ohb, S. T. Myung, J. Hassound and B. Scrosati, Electrochem. Commun. 22, 149 (2012).   DOI
11 R. Kapaev et al., J. Solid State Electrochem. 21, 2373 (2017).   DOI
12 Y. Liu, N. Zhang, F. Wang, X. Liu, L. Jiao and L. Fan, Adv. Funct. Mater. 28, 1801917 (2018).   DOI
13 G. Ali et al., ACS Appl. Mater. Interfaces 8, 15422 (2016).   DOI
14 J. Molenda, A. Kulka, A. Milewska, W. Zajac and K. Swierczek, Materials 6, 1656 (2013).   DOI
15 J. Yao, K. Konstantinov, G. X. Wang and H. K. Liu, J. Solid State Electrochem. 11, 177 (2007).
16 S. J. Moon and C. S. Kim, J. Korean Phys. Soc. 53, 1589 (2008).   DOI
17 P. Ravindran, R. Vidya, H. Fjellvag and A. Kjekshus, Phys. Rev. B 77, 134448 (2008).   DOI
18 H. Choi, M. H. Kim, T. Kouh and C. S. Kim, Sci. Adv. Mater. 10, 682 (2018).   DOI
19 W. Kim, C. H. Rhee, H. J. Kim, S. J. Moon and C. S. Kim, Appl. Phys. Lett. 96, 242505 (2010).   DOI
20 R. Ingalls, Phys. Rev. 133, A787 (1964).   DOI
21 H. N. Ok, Mossbauer spectroscopy (Minumsa, Seoul, 1983), Chap. 2, p. 32.
22 N. V. Kosova, V. R. Podugolnikov, E. T. Devyatkina and A. B. Slobodyuk, Mater. Res. Bull. 60, 849 (2014).   DOI