Peptide phage display 기술을 이용한 나노입자의 materials recognition 응용 - Part II: Fe3O4 나노입자를 이용한 magnetic bio-panning

Application of Nanoparticles for Materials Recognition Using Peptide Phage Display Technique - Part II: Magnetic Bio-panning Using Fe3O4 Nanoparticles

  • Lee, Chang-Woo (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Kim, Min-Jung (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Standaert, R. (Biological and Nanoscale Systems Group, Oak Ridge National Laboratory) ;
  • Kim, Seyeon (Biological and Nanoscale Systems Group, Oak Ridge National Laboratory) ;
  • Owens, E. (Biological and Nanoscale Systems Group, Oak Ridge National Laboratory) ;
  • Yan, Jun (Biological and Nanoscale Systems Group, Oak Ridge National Laboratory) ;
  • Choa, Yong-Ho (Division of Materials and Chemical Engineering, Hanyang University) ;
  • Doktycz, M. (Biological and Nanoscale Systems Group, Oak Ridge National Laboratory) ;
  • Lee, Jai-Sung (Division of Materials and Chemical Engineering, Hanyang University)
  • 투고 : 2007.12.20
  • 발행 : 2008.03.22

초록

The magnetism of$Fe_3O_4$ nanoparticles was applied to magnetic bio-panning process for finding specific sequences against $Fe_3O_4$ crystal phase. Vibrating sample magnetometer (VSM) measurement showed that the coercivity of 30 Oe and the saturation magnetization of 55 emu/g were sufficient in controlling particle movement and magnetizing particles in the media, respectively. This ferrimagnetism of nanoparticles practically enhanced panning efficiency by exaggerating centrifuge step and preventing particle loss. Sequencing results showed that histidine which was commonly found in peptide sequences played an important role in the binding onto $Fe_3O_4$ nanoparticle surface. However, various possible motifs were also observed from several neighboring amino acids of histidine.

키워드

참고문헌

  1. S. Kamali-M, T. Ericsson and R. Wäppling, Thin Solid Films 515, 721 (2006) https://doi.org/10.1016/j.tsf.2005.12.180
  2. T. Kim, L. Reis, K. Rajan and M. Shima, J. Magn. Magn. Mater. 295, 132 (2005) https://doi.org/10.1016/j.jmmm.2005.01.004
  3. Y. -L Shi, W. Qui and Y. Zheng, J. Phys. Chem. Solids, 67., 2409 (2006) https://doi.org/10.1016/j.jpcs.2006.06.021
  4. C. W. Lee, S. G. Kim, S. H. Yun, J. S. Lee, and Y. H. Choa, Korean J. Mater. Res. 15, 508 (2005) https://doi.org/10.3740/MRSK.2005.15.8.508
  5. A. K. Gupta and M. Gupta, Biomater., 26., 3995 (2005) https://doi.org/10.1016/j.biomaterials.2004.10.012
  6. C. L. Chiang, C. S. Sung, T. F. Wu, C. Y. Chen and C. Y. Hsu, J. Chromatography B 822, 54 (2005) https://doi.org/10.1016/j.jchromb.2005.05.017
  7. P. Guardia, B. Batlle-Brugal, A. G. Roca, O. Iglesias, M. P. Morales, C. J. Serna, A. Labarta and X. Batlle, J. Magn. Magn. Mater. 316, e756 (2007) https://doi.org/10.1016/j.jmmm.2007.03.085
  8. J. L. Arias et al., J. Controlled Release. 77. 309 (2001) https://doi.org/10.1016/S0168-3659(01)00519-3
  9. M. Shimomura et al., Polymer. 44. 3877 (2003) https://doi.org/10.1016/S0032-3861(03)00327-6
  10. D. Tanyola, A. R. zdural, React. Funct. Polym. 43, 279 (2000) https://doi.org/10.1016/S1381-5148(99)00054-1
  11. C. W. Lee, M. J. Kim, R. Standaert, Seyeon Kim, E. Owens, Jun Yan, Y. H. Choa, M. Doktycz, and J. S. Lee, J. Kor. Inst. Met. Mater. 62, 6 (2008)
  12. J. Y. Chen, Y. L. Liao, T. H. Wang and W. C. Lee, Enzyme Microbial Technol. 39, 366 (2006) https://doi.org/10.1016/j.enzmictec.2005.11.035
  13. D. Caruntu, G. Caruntu, Y. Chen, C. J. O'Connor, G. Goloverda and V. L. Kolesnichenko, Chem. Mater. 16, 5527 (2004) https://doi.org/10.1021/cm0487977
  14. E. H. Kim, Y. Ahn, H. S. Lee, J. Alloys Compounds, 434-435, 633 (2007) https://doi.org/10.1016/j.jallcom.2006.08.311
  15. Tech. Bull., Ph. D.TM Phage Display Peptide Library Kits, New England Biolabs, Inc. (2004)
  16. Powder diffraction file, card 19-0629. JDPDS-ICDD, Swarthmore, PA (1997)