Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.7.362

Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application  

Lee, Eun-Hee (Nano-IT Convergence Center, Korea Institute of Ceramic Engineering & Technology)
Choa, Yong-Ho (Department of Chemical Engineering, Hanyang University)
Kim, Chang-Yeoul (Nano-IT Convergence Center, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Korean Journal of Materials Research / v.22, no.7, 2012 , pp. 362-367 More about this Journal
Abstract
Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.
Keywords
magnetite nanoparticles; aerogel; hyperthermia; surface modification; drug delivery;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 C. Tsang, T. Lin, S. Macdonald, M. Pinarbasi, N. Robertson, H. Santini, M. Doerner, T. Reith, V. Lang, T. Diola and P. Arnett, IEEE Trans. Magn., 33, 2866 (1997).   DOI   ScienceOn
2 J. -M. Nam, C. S. Thaxton and C. A. Mirkin, Science, 301, 1884 (2003).   DOI   ScienceOn
3 P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno and C. J Serna, J. Phys. Appl. Phys., 36, R182 (2003).   DOI   ScienceOn
4 P. Gould, Mater. Today, 7(2), 36 (2004).   DOI   ScienceOn
5 D. S. Kil, H. D. Jang, H. Chang, K. Cho, S. K. Kim, K. J. Oh and J. H. Choi, Kor. J. Mater. Res., 20(2), 78 (2010) (in Korean).   DOI   ScienceOn
6 H. H. Kim, H. Park and K. N. Kim, Kor. J. Mater. Res., 20(5), 252 (2010) (in Korean).   DOI   ScienceOn
7 T. H. Eom, H. T. Tuan, S. J. Kim, S. J. An, K. H. Oh and D. S. Suhr, Kor. J. Mater. Res., 21(4), 225 (2011) (in Korean).   DOI   ScienceOn
8 W. S. Park, K. H. Oh, S. J. An and D. S. Suhr, Kor. J. Mater. Res., 22(5), 253 (2012) (in Korean).
9 J. H. Son and D. S. Bae, Kor. J. Mater. Res., 22(6), 298 (2012).   DOI   ScienceOn
10 J. Park, K. An, Y. Hwang, J. -G. Park, H. -J. Noh, J. -Y. Kim, J. -H. Park, N. -M. Hwang and T. Hyeon, Nat. Mater., 3, 891 (2004).   DOI   ScienceOn
11 J. Xie, S. Peng, N. Brower, N. Pourmand, S. X. Wang and S. Sun, Pure Appl. Chem., 78, 1003 (2006).   DOI   ScienceOn
12 E. H. Lee, C. Y. Kim and Y. H. Choa, Curr. Appl., Phys., (2012) (in Press). http://dx.doi.org/10.1016/j.cap.2012.02.017.
13 S. M. Kim, K. Chakrabarti, E. O. Oh and C. M. Whang, J. Sol-Gel Sci. Technol., 27, 149 (2003).   DOI   ScienceOn
14 V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield and J. C. Bischof, Nanotechnology, 16, 1221 (2005).   DOI   ScienceOn
15 S. P. Gubin, Magnetic Nanoparticles, p. 419, Wiley-VCH GmbH &Co. KGaA, Winheim, Germany (2009).