• Title/Summary/Keyword: viability decrease

Search Result 514, Processing Time 0.033 seconds

Ethanol Extract from Asparagus Cochinchinensis Attenuates Glutamate-Induced Oxidative Toxicity in HT22 Hippocampal Cells (HT22 해마세포의 oxidative toxicity에 대한 천문동 유래 에탄올추출물의 보호 효과)

  • Pak, Malk Eun;Choi, Byung Tae
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1458-1465
    • /
    • 2016
  • We investigated the neuroprotective effect of an ethanol extract from Asparagus cochinchinensis (AC) against glutamate-induced toxicity in the HT22 hippocampal cell, which is an ideal in vitro model for oxidative stress. The neuroprotective effects of AC in HT22 cells were evaluated by analyzing cell viability, lactate dehydrogenase (LDH), flow cytometry for cell death types, reactive oxygen species (ROS), mitochondria membrane potential (MMP), and Western blot assays. In the cell death analysis, AC treatment resulted in significantly attenuated glutamate-induced loss of cell viability with a decrease in LDH release. AC treatment also reduced glutamate-induced apoptotic cell death. In the ROS and MMP analysis, AC treatment inhibited the elevation of intracellular ROS induced by glutamate exposure and the disruption of MMP. In oxidative stress-related proteins analysis, AC treatment inhibited the expression of poly ADP ribose polymerase and heme oxygenase-1 by glutamate. These results indicate that AC exerts a significant neuroprotective effect against glutamate-induced hippocampal damage by decreasing ROS production and stabilizing MMP. Thus, AC potentially provides a new strategy for the treatment of oxidative stress-related diseases.

Glucose-6-phosphate dehydrogenase deficiency does not increase the susceptibility of sperm to oxidative stress induced by H2O2

  • Roshankhah, Shiva;Rostami-Far, Zahra;Shaveisi-Zadeh, Farhad;Movafagh, Abolfazl;Bakhtiari, Mitra;Shaveisi-Zadeh, Jila
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.4
    • /
    • pp.193-198
    • /
    • 2016
  • Objective: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. G6PD plays a key role in the pentose phosphate pathway, which is a major source of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH provides the reducing equivalents for oxidation-reduction reductions involved in protecting against the toxicity of reactive oxygen species such as $H_2O_2$. We hypothesized that G6PD deficiency may reduce the amount of NADPH in sperms, thereby inhibiting the detoxification of $H_2O_2$, which could potentially affect their motility and viability, resulting in an increased susceptibility to infertility. Methods: Semen samples were obtained from four males with G6PD deficiency and eight healthy males as a control. In both groups, motile sperms were isolated from the seminal fluid and incubated with 0, 10, 20, 40, 60, 80, and $120{\mu}M$ concentrations of $H_2O_2$. After 1 hour incubation at $37^{\circ}C$, sperms were evaluated for motility and viability. Results: Incubation of sperms with 10 and $20{\mu}M\;H_2O_2$ led to very little decrease in motility and viability, but motility decreased notably in both groups in 40, 60, and $80{\mu}M\;H_2O_2$, and viability decreased in both groups in 40, 60, 80, and $120{\mu}M\;H_2O_2$. However, no statistically significant differences were found between the G6PD-deficient group and controls. Conclusion: G6PD deficiency does not increase the susceptibility of sperm to oxidative stress induced by $H_2O_2$, and the reducing equivalents necessary for protection against $H_2O_2$ are most likely produced by other pathways. Therefore, G6PD deficiency cannot be considered as major risk factor for male infertility.

Cryopreservation and low-temperature storage of seeds of Phaius tankervilleae

  • Hirano, Tomonari;Godo, Toshinari;Miyoshi, Kazumitsu;Ishikawa, Keiko;Ishikawa, Masaya;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • In this study we established reliable methods for conservation of seeds of Phaius tankervilleae as an orchid genetic resource. The seeds, which were dehydrated to 5% water content and preserved at $4^{\circ}C$, showed no decrease in viability and germinability after three months. After storage for six months, however, the seeds showed a drastic decrease in germinability, even though survival rate was high. For long-term preservation of seeds of P. tankervilleae, cryopreservation is applied to the freshly harvested seeds. When the seeds were cryopreserved by the vitrification method for up to 12 months there was no apparent deterioration effect of storage time. These results indicate that cryopreservation by the vitrification method is useful for long-term conservation of P. tankervilleae seeds, which are difficult to preserve for more than three months under dry and low-temperature conditions.

Isolation of Ethanol-tolerant Strains of Yeast in Relation to Their Tolerant Mechanism (에탄올 내성 효모의 선별과 그의 에탄올 내성 기작)

  • 지계숙;박소영;이지나;이영하;민경희
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1991
  • The selection of ethanol-tolerant strains was applied to enrichment culture of YPD broth medium containing various concentrations of ethanol. Isolates were identified to be Saccharomyces cerevisiae, the others as S. dairensis, S. exiguus, S. telluris, Saccharomycodes ludwigii, Schwanniomyces occidentalis var. occidentalis and Zygosaccharomyces florentinus. Among isolates S. cerevisiae YO-1 was screened as having the highest ethanol tolerance and produced 18% (v/v) ethanol after 4 days fermentation. The change of fatty-acyl residues represents that a progressive decrease in fatty-acyl unsaturation and a proportional increase in saturation in phospholipids of yeast cells during fermentation affected the yeast viability. Supplementation ethanol to the cultures led to an increase of unsaturated fatty-acyl residues, especially $C_{16}$ or $C_{18}$ residues, along with a decrease in the proportion of saturated residues in cellular phospholipids. Increasing the amount of soy flour led to an increase in the maximum number of viable yeast cells and ethanol production. It was possible in 4 days to reach 21% (v/v) ethanol by adding 4% soy flour as source of unsaturated fatty-acyl residues to the fermentation medium. Soy flour not only increased yeast population but also enhanced the physiological properties of yeast cells to be ethanol tolerant in the anaerobic culture.

  • PDF

Galangin and Kaempferol Suppress Phorbol-12-Myristate-13-Acetate-Induced Matrix Metalloproteinase-9 Expression in Human Fibrosarcoma HT-1080 Cells

  • Choi, Yu Jung;Lee, Young Hun;Lee, Seung-Taek
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.151-155
    • /
    • 2015
  • Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to $30{\mu}M$. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce $I{\kappa}B{\alpha}$ phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-${\kappa}B$ and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

Cell Death by Polyvinylpyrrolidine-Coated Silver Nanoparticles is Mediated by ROS-Dependent Signaling

  • Kang, Kyeong-Ah;Jung, Hye-Youn;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.399-405
    • /
    • 2012
  • Silver nanoparticles (AgNPs) are widely used nanoparticles and they are mainly used in antibacterial and personal care products. In this study, we evaluated the effect of AgNPs on cell death induction in the murine dendritic cell line DC2.4. DC2.4 cells exposed to AgNPs showed a marked decrease in cell viability and an induction of lactate dehydrogenase (LDH) leakage in a time- and dose-dependent manner. In addition, AgNPs promoted reactive oxygen species (ROS)-dependent apoptosis and AgNP-induced ROS triggered a decrease in mitochondrial membrane potential. The activation of the intracellular signal transduction pathway was also observed in cells cultured with AgNPs. Taken together, our data demonstrate that AgNPs are able to induce a cytotoxic effect in DCs through ROS generation. This study provides important information about the safety of AgNPs that may help in guiding the development of nanotechnology applications.

The Neuroprotective Effects of Carnosine in Early Stage of Focal Ischemia Rodent Model

  • Park, Hui-Seung;Han, Kyung-Hoon;Shin, Jeoung-A;Park, Joo-Hyun;Song, Kwan-Young;Kim, Doh-Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • Objective : This study was conducted to elucidate neuroprotective effect of carnosine in early stage of stroke. Methods : Early stage of rodent stroke model and neuroblastoma chemical hypoxia model was established by middle cerebral artery occlusion and antimycin A. Neuroprotective effect of carnosine was investigated with 100, 250, and 500 mg of carnosine treatment. And antioxidant expression was analyzed by enzyme linked immunosorbent assay (ELISA) and western blot in brain and blood. Results : Intraperitoneal injection of 500 mg carnosine induced significant decrease of infarct volume and expansion of penumbra (p<0.05). The expression of superoxide dismutase (SOD) showed significant increase than in saline group in blood and brain (p<0.05). In the analysis of chemical hypoxia, carnosine induced increase of neuronal cell viability and decrease of reactive oxygen species (ROS) production. Conclusion : Carnosine has neuroprotective property which was related to antioxidant capacity in early stage of stroke. And, the oxidative stress should be considered one of major factor in early ischemic stroke.

Inhibitory Effects of Alveopora japonica Extract on Melanin Synthesis (거품돌산호 추출물의 멜라닌 합성 억제 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.3
    • /
    • pp.143-148
    • /
    • 2021
  • This study was performed to elucidate the inhibitory effects of Alveopora japonica extract on melanin synthesis by measuring the levels of cell viability, mRNA expression, tyrosinase activity, and melanin production in the B16F10 cell line. The effects of A. japonica extract on tyrosinase-related protein 1 (TYRP1), TYRP2, tyrosinase (TYR), and microphthalmia-associated transcription factor (MITF) mRNA expression levels and melanin content were determined. Quantitative real-time RT-PCR show that A. japonica extract decrease the mRNA expression levels of TYRP1, TYRP2, TYR, and MITF in B16F10 cell line, resulting in lower levels of melanin production compared to α-MSH-treated B16F10 cells. Tyrosinase activity assays reveal that A. japonica extract decrease melanin production in B16F10 cells. These results demonstrate the whitening effects of A. japonica extract on B16F10 cells; thus, A. japonica extract is a potent ingredient for skin whitening. Further research is needed on the mechanism of action of A. japonica extract. Such research will benefit not only cosmetics, but also the health food and medical industries.

Seed Viability and Growth Characteristics of Eclipta prostrata (L.) L. (한련초의 종자생존력(種子生存力) 및 생장특성(生長特性))

  • Lee, H.K.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.8 no.3
    • /
    • pp.309-316
    • /
    • 1988
  • Several experiments were conducted to investigate the achene viability and growth characteristics of Eclipta prostrata (L.) L. No dormancy and no after-ripening requirement were found for E. prostrata achenes. When achenes were stored at room temperature, germination did not decrease with up to 5 months storage. Large differences in loss of viability of E. prostrata achenes occurred when different dehydration methods were used. Immediate dehydration resulted in high viability, but slow dehydration resulted in severe loss of viability. Achene viability at shallow burial depths (5 and 10 cm deep) was lower under upland soil conditions than under lowland soil conditions. Seedling growth was greatly reduced when flooding to a depth of 10 cm occurred at or before the 4-leaf stage. Flooding after the 4-leaf stage stimulated stem elongation. Branching started from the second week and usually terminated at the tenth week. Leaf size was determined by the branch which are related to the assimilate supply. Flowering of E. prostrata started during the fifth week after emergence, and mature achenes were produced from the sixth week. Ten to 14 days were needed for the achenes to mature. About 14,000 achenes were produced on each plant. Achene production per week increased from the sixth week to the tenth week and thereafter it declined. The average number of achenes per inflorescence decreased with delay in flowering.

  • PDF

Role of Redistribution and 24 Hour Reinjection Images to assess Myocardial Viability in Patients with Acute Myocardial Infarction (급성심근경색환자의 심근생존능 평가에 있어서 T1-201 재분포영상과 24시간 재주사영상의 역할)

  • Yoon, Seok-Nam;Pai, Moon-Sun;Park, Chan-H.;Yoo Myung-Ho;Choi, Byung-Il William
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.325-331
    • /
    • 1998
  • Purpose: We evaluated the importance of redistribution and 24 hour reinjection images in T1-201 SPECT assessment of myocardial viability after acute myocardial infarction (AMI). Materials and Methods: We performed dipyridamole stress-4 hour redistribution-24 hour reinjection T1-201 SPECT in 43 patients with recent AMI (4-16 days). The myocardium was divided into 16 segments and perfusion grade was measured visually with 4 point score from 0 to 3 (absent uptake to normal uptake). A perfusion defect with stress score 2 was considered moderate. A defect was considered severe if the stress score was 0 or 1 (absent uptake or severe perfusion decrease). Moderate defect on stress image were considered viable and segments with severe defect were considered viable if they showed improvement of 1 score or more on redistribution or reinjection images. We compared the results of viability assessment in stress-redistribution and stress-reinjection images. Results: On visual analysis, 344 of 688 segments (50%) had abnormal perfusion. Fifty two (15%) had moderate perfusion defects and 292 (85%) had severe perfusion defects on stress image. Of 292 severe stress defects, 53 were irreversible on redistribution and reversible on reinjection images, and 15 were reversible on redistribution and irreversible on reinjection images. Two hundred twenty four of 292 segments (76.7%) showed concordant results on stress-redistribution and stress-reinjection images. Therefore 24 hour reinjection image changed viability status from necrotic to viable in 53 segments of 292 severe stress defect (18%). However, myocardial viability was underestimated in only 5% (15/292) of severe defects by 24 hour reinjection. Conclusion: The 24 hour reinjection imaging is useful in the assessment of myocardial viability. It is more sensitive than 4 hour redistribution imaging. However, both redistribution and reinjection images are needed since they complement each other.

  • PDF