Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.4.399

Cell Death by Polyvinylpyrrolidine-Coated Silver Nanoparticles is Mediated by ROS-Dependent Signaling  

Kang, Kyeong-Ah (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University)
Jung, Hye-Youn (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University)
Lim, Jong-Seok (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University)
Publication Information
Biomolecules & Therapeutics / v.20, no.4, 2012 , pp. 399-405 More about this Journal
Abstract
Silver nanoparticles (AgNPs) are widely used nanoparticles and they are mainly used in antibacterial and personal care products. In this study, we evaluated the effect of AgNPs on cell death induction in the murine dendritic cell line DC2.4. DC2.4 cells exposed to AgNPs showed a marked decrease in cell viability and an induction of lactate dehydrogenase (LDH) leakage in a time- and dose-dependent manner. In addition, AgNPs promoted reactive oxygen species (ROS)-dependent apoptosis and AgNP-induced ROS triggered a decrease in mitochondrial membrane potential. The activation of the intracellular signal transduction pathway was also observed in cells cultured with AgNPs. Taken together, our data demonstrate that AgNPs are able to induce a cytotoxic effect in DCs through ROS generation. This study provides important information about the safety of AgNPs that may help in guiding the development of nanotechnology applications.
Keywords
Silver nanoparticle; Dendritic cells; Reactive oxygen species (ROS); Apoptosis; Intracellular signaling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, J., Sun, J. and Xue, Y. (2010) Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol. Lett. 199, 269-276.   DOI
2 Yen, H. J., Hsu, S. H. and Tsai, C. L. (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5, 1553-1561.   DOI
3 Zanette, C., Pelin, M., Crosera, M., Adami, G., Bovenzi, M., Larese, F. F. and Florio. C. (2011) Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Toxicol. In Vitro 25, 1053-1060.   DOI
4 Zhang, L. W., Bäumer, W. and Monteiro-Riviere, N. A. (2011) Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine (Lond) 6, 777-791.   DOI
5 Ahamed, M., Posgai, R., Gorey, T. J., Nielsen, M., Hussain, S. M. and Rowe, J. J. (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol. 242, 263-269.   DOI
6 Asharani, P. V., Lianwu, Y., Gong, Z. and Valiyaveettil, S. (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafi sh embryos. Nanotoxicology 5, 43-54.   DOI
7 AshaRani, P. V., Low Kah Mun, G., Hande, M. P. and Valiyaveettil, S. (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS. Nano. 3, 279-290.   DOI
8 Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252.   DOI   ScienceOn
9 Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B. and Palucka, K. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767-811.   DOI   ScienceOn
10 Blanco, P., Palucka, A. K., Pascual, V. and Banchereau, J. (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 19, 41-52.   DOI   ScienceOn
11 Boucher, W., Stern, J. M., Kotsinyan, V., Kempuraj, D., Papaliodis, D., Cohen, M. S. and Theoharides, T. C. (2008) Intravesical nanocrystalline silver decreases experimental bladder inflammation. J. Urol. 179, 1598-1602.   DOI
12 Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L. and Schlager, J. J. (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112, 13608-13619.   DOI   ScienceOn
13 Costa, C. S., Ronconi, J. V., Daufenbach, J. F., Gonçalves, C. L., Rezin, G. T., Streck, E. L. and Paula, M. M. (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol. Cell Biochem. 342, 51-56.   DOI
14 Eom, H. J. and Choi, J. (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ. Sci. Technol. 44, 8337- 8842.   DOI
15 Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H. and Yacaman, M. J. (2005) Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology 3, 6.   DOI   ScienceOn
16 Eom, H. J. and Choi, J. (2009a) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol. Lett. 187, 77-83.   DOI
17 Eom, H. J. and Choi, J. (2009b) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol. In Vitro 23, 1326-1332.   DOI
18 Hackenberg, S., Scherzed, A., Kessler, M., Hummel, S., Technau, A., Froelich, K., Ginzkey, C., Koehler, C., Hagen, R. and Kleinsasser, N. (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 201, 27-33.   DOI
19 Heath, W. R., Belz, G. T., Behrens, G. M., Smith, C. M., Forehan, S. P., Parish, I. A., Davey, G. M., Wilson, N. S., Carbone, F. R. and Villadangos, J. A. (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9-26.   DOI
20 Heng, B. C., Zhao, X., Tan, E. C., Khamis, N., Assodani, A., Xiong, S., Ruedl, C., Ng, K. W. and Loo, J. S. (2011) Evaluation of the cytotoxic and infl ammatory potential of differentially shaped zinc oxide nanoparticles. Arch. Toxicol. 85, 1517-1528.   DOI
21 Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S. and Chueh, P. J. (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130-139.   DOI
22 Lee, Y. S., Kim, D. W., Lee, Y. H., Oh, J. H., Yoon, S., Choi, M. S., Lee, S. K., Kim, J. W., Lee, K. and Song, C. W. (2011) Silver nanoparticles induce apoptosis and G2/M arrest via $ PKC{\zeta}$-dependent signaling in A549 lung cells. Arch. Toxicol. 85, 1529-1540.   DOI
23 Kang, K., Lim, D. H., Choi, I. H., Kang, T., Lee, K., Moon, E. Y., Yang, Y., Lee, M. S. and Lim, J. S. (2011) Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol. Lett. 205, 227-234.   DOI
24 Kim, S., Choi, J. E., Choi, J., Chung, K. H., Park, K., Yi, J. and Ryu, D. Y. (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 23, 1076-1084.   DOI   ScienceOn
25 Koike, E., Takano, H., Inoue, K., Yanagisawa, R. and Kobayashi, T. (2008) Carbon black nanoparticles promote the maturation and function of mouse bone marrow-derived dendritic cells. Chemosphere 73, 371-376.   DOI
26 Lim, D. H., Jang, J., Kim, S., Kang, T., Lee, K. and Choi, I. H. (2012) The effects of sub-lethal concentrations of silver nanoparticles on infl ammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33, 4690-4699.   DOI
27 Nallathamby, P. D. and Xu, X. H. (2010) Study of cytotoxic and therapeutic effects of stable and purifi ed silver nanoparticles on tumor cells. Nanoscale 2, 942-952.   DOI
28 Nishanth, R. P., Jyotsna, R. G., Schlager, J. J., Hussain, S. M. and Reddanna, P. (2011) Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-$NF{\kappa}B$ signaling pathway. Nanotoxicology 5, 502-516.   DOI
29 Park, E. J. and Park, K. (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184, 18-25.   DOI   ScienceOn
30 Park, E. J., Bae, E., Yi, J., Kim, Y., Choi, K., Lee, S. H., Yoon, J., Lee, B. C. and Park, K. (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol. 30, 162-168.   DOI   ScienceOn
31 Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. S., Kim, S., Choi, J. Y., Choi, J. and Hyun, J. W. (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 201, 92-100.   DOI
32 Shen, Z., Reznikoff, G., Dranoff, G. and Rock, K. L. (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723-2730.
33 Shukla, R. K., Sharma, V., Pandey, A. K., Singh, S., Sultana, S. and Dhawan, A. (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. In Vitro 25, 231-241.   DOI
34 Sriram, M. I., Kanth, S. B., Kalishwaralal, K. and Gurunathan, S. (2010) Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine 5, 753-762.
35 Su, H. L., Chou, C. C., Hung, D. J., Lin, S. H., Pao, I. C., Lin, J. H., Huang, F. L., Dong, R. X. and Lin, J. J. (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30, 5979-5987.   DOI   ScienceOn
36 Wang, F., Gao, F., Lan, M., Yuan, H., Huang, Y. and Liu, J. (2009) Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. In Vitro 23, 808-815   DOI
37 Winter, M., Beer, H. D., Hornung, V., Krämer, U., Schins, R. P. and Förster, I. (2011) Activation of the infl ammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology 5, 326-340.   DOI