Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.12.1458

Ethanol Extract from Asparagus Cochinchinensis Attenuates Glutamate-Induced Oxidative Toxicity in HT22 Hippocampal Cells  

Pak, Malk Eun (Department of Korean Medical Science, School of Korean Medicine, Pusan National University)
Choi, Byung Tae (Department of Korean Medical Science, School of Korean Medicine, Pusan National University)
Publication Information
Journal of Life Science / v.26, no.12, 2016 , pp. 1458-1465 More about this Journal
Abstract
We investigated the neuroprotective effect of an ethanol extract from Asparagus cochinchinensis (AC) against glutamate-induced toxicity in the HT22 hippocampal cell, which is an ideal in vitro model for oxidative stress. The neuroprotective effects of AC in HT22 cells were evaluated by analyzing cell viability, lactate dehydrogenase (LDH), flow cytometry for cell death types, reactive oxygen species (ROS), mitochondria membrane potential (MMP), and Western blot assays. In the cell death analysis, AC treatment resulted in significantly attenuated glutamate-induced loss of cell viability with a decrease in LDH release. AC treatment also reduced glutamate-induced apoptotic cell death. In the ROS and MMP analysis, AC treatment inhibited the elevation of intracellular ROS induced by glutamate exposure and the disruption of MMP. In oxidative stress-related proteins analysis, AC treatment inhibited the expression of poly ADP ribose polymerase and heme oxygenase-1 by glutamate. These results indicate that AC exerts a significant neuroprotective effect against glutamate-induced hippocampal damage by decreasing ROS production and stabilizing MMP. Thus, AC potentially provides a new strategy for the treatment of oxidative stress-related diseases.
Keywords
Asparagus cochinchinensis (AC); hippocampal cell; mitochondria membrane potential; oxidative stress; reactive oxygen species (ROS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nikolova, S., Lee, Y. S., Lee, Y. S. and Kim, J. A. 2005. Rac1- NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic. Res. 39, 1295-1304.   DOI
2 Pak, M. E., Kim, Y. R., Kim, H. N., Ahn, S. M., Shin, H. K., Baek, J. U. and Choi, B. T. 2016. Studies on medicinal herbs for cognitive enhancement based on the text mining of Dongeuibogam and preliminary evaluation of its effects. J. Ethnopharmacol. 179, 383-390.   DOI
3 Pallast, S., Arai, K., Wang, X., Lo, E. H. and van Leyen, K. 2009. 12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress. J. Neurochem. 111, 882-889.   DOI
4 Pietrofesa, R. A., Velalopoulou, A., Lehman, S. L., Arguiri, E., Solomides, P., Koch, C. J., Mishra, O. P., Koumenis, C., Goodwin, T. J. and Christofidou-Solomidou, M. 2016. Novel double-hit model of radiation and hyperoxia-induced oxidative cell damage relevant to space travel. Int. J. Mol. Sci. 17, 953-975.   DOI
5 Starkov, A. A., Chinopoulos, C. and Fiskum, G. 2004. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36, 257-264.   DOI
6 Tan, S., Schubert, D. and Maher, P. 2001. Oxytosis: A novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497-506.   DOI
7 Tan, S., Wood, M. and Maher, P. 1998. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71, 95-105.
8 Xiong, D., Yu, L. X., Yan, X., Guo, C. and Xiong, Y. 2011. Effects of root and stem extracts of Asparagus cochinchinensis on biochemical indicators related to aging in the brain and liver of mice. Am. J. Chin. Med. 39, 719-726.   DOI
9 Zhang, Y. and Bhavnani, B. R. 2005. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release. BMC Neurosci. 6, 13-35.   DOI
10 Yan, M. H., Wang, X. and Zhu, X. 2013. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62, 90-101.   DOI
11 Colussi, P. A., Harvey, N. L., Shearwin-Whyatt, L. M. and Kumar, S. 1998. Conversion of procaspase-3 to an autoactivating caspase by fusion to the caspase-2 prodomain. J. Biol. Chem. 273, 26566-26570.   DOI
12 Anand, R., Wai, T., Baker, M. J., Kladt, N., Schauss, A. C., Rugarli, E. and Langer, T. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell. Biol. 204, 919-929.   DOI
13 Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A. and Nicotera, P. 1995. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961-973.   DOI
14 Budihardjo, I., Oliver, H., Lutter, M., Luo, X. and Wang, X. 1999. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15, 269-290.   DOI
15 Choi, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634.   DOI
16 Choi, D. W. 1992. Excitotoxic cell death. J. Neurobiol. 23, 1261-1276.   DOI
17 Davis, J. B. and Maher, P. 1994. Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res. 652, 169-173.   DOI
18 Fukui, M., Song, J. H., Choi, J., Choi, H. J. and Zhu, B. T. 2009. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 617, 1-11.   DOI
19 Fukui, M. and Zhu, B. T. 2010. Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radic. Biol. Med. 48, 821-830.   DOI
20 Halestrap, A. P., Doran, E., Gillespie, J. P. and O'Toole, A. 2000. Mitochondria and cell death. Biochem. Soc. Trans. 28, 170-177.   DOI
21 Henchcliffe, C. and Beal, M. F. 2008. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 4, 600-609.
22 Jalsrai, A., Numakawa, T., Kunugi, H., Dieterich, D. C. and Becker, A. 2016. The neuroprotective effects and possible mechanism of action of a methanol extract from Asparagus cochinchinensis: In vitro and in vivo studies. Neuroscience 322, 452-463.   DOI
23 Lo, E. H., Moskowitz, M. A. and Jacobs, T. P. 2005. Exciting, radical, suicidal: how brain cells die after stroke. Stroke 36, 189-192.   DOI
24 Jian, R., Zeng, K. W., Li, J., Li, N., Jiang, Y. and Tu, P. 2013. Anti-neuroinflammatory constituents from Asparagus cochinchinensis. Fitoterapia 84, 80-84.   DOI
25 Kim, H., Lee, E., Lim, T., Jung, J. and Lyu, Y. 1998. Inhibitory effect of Asparagus cochinchinensis on tumor necrosis factor-alpha secretion from astrocytes. Int. J. Immunopharmacol. 20, 153-162.   DOI
26 Lei, L., Ou, L. and Yu, X. 2016. The antioxidant effect of Asparagus cochinchinensis (Lour.) Merr. shoot in d-galactose induced mice aging model and in vitro. J. Chin. Med. Assoc. 79, 205-211.   DOI
27 Lin, M. T. and Beal, M. F. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795.   DOI
28 Liu, H., Mao, P., Wang, J., Wang, T. and Xie, C. H. 2015. Allicin protects PC12 cells against 6-OHDA-induced oxidative stress and mitochondrial dysfunction via regulating mitochondrial dynamics. Cell. Physiol. Biochem. 36, 966-979.   DOI
29 Maher, P. and Davis, J. B. 1996. The role of monoamine metabolism in oxidative glutamate toxicity. J. Neurosci. 16, 6394-6401.   DOI
30 Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. and Coyle, J. T. 1989. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558.   DOI