• Title/Summary/Keyword: vertical bearing capacity

Search Result 224, Processing Time 0.026 seconds

Experiment of single screw piles under inclined cyclic pulling loading

  • Dong, Tian Wen;Zheng, Ying Ren
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.801-810
    • /
    • 2015
  • The ultimate pullout capacity under inclined dynamic loading is an important measure of the destruction degree of vertical screw piles (anchors) under dynamic actions. Based on the static and dynamic tests on two kinds of model screw piles, the ultimate bearing capacity was researched considering different distance-width ratio of blade (D/W) and preloading ratio. The results compared well with other experimental data available in the literature. This research reveals that D/W might determine the failure model of the piles (anchors), for example D/W = 3.14 or 5; a critical dynamic-static loading ratio (DSLR) existed in the experiments. The critical DSLR was reached under the conditions of 40%~60% preloading (D/W = 3.14) or 20%~40% preloading (D/W = 5), respectively.

Model Tests of Soil Nailing System under Surcharges (상재하중 하의 Soil Nailing System의 모형실험)

  • Yoo, Nam-Jae;Yoo, Kun-Sun;Kim, Jae-II
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.77-87
    • /
    • 1994
  • This research is an experimental work of investigating the behavior of soil nailing system under surcharges whereas most of them were concentrated on evaluating its capacity under selfweight of excavated ground. Model tests in laboratory were performed to investigate the ultimate bearing capacity of soil nailing system under surcharges in forms of strip loading. Tests were carried out to find parameters controlling its capacity such as length of nail, vertical and horizontal spacings between nails, inclination of nail installation, and loading position of surcharges. Failure mechanism of forming failure line due to surcharge to soil nailing system was also observed by using dyed sand and monitoring its behavior. From results of these test, effects of parameters was analyzed qualitatively. Thus, this experimental results could provide meaningful data to analyze and design this system later.

  • PDF

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

Behavior of Retaining wall near Rigid slopes (강성사면에 인접한 옹벽의 거동에 관한 연구)

  • Yoo, Nam-Jae;Lee, Myoung-Woog;Park, Byoung-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.405-415
    • /
    • 1998
  • This thesis is an experimental and numerical research on bearing capacity acting retaining walls close to rigid slopes with stiff angles. Experiments were performed with changing the roughness of adjacent slope to the wall, its inclination, distance between wall and slope. Vertical stress and applied surcharge loads were measured by miniature earth cells and a load cel respectively. Stress distribution Vertical Settlement of surcharge load of rigid model footing were measured by LVDTs. Bearing capacities of surcharge loads were compared with theoretical estimations by using several different methods of limit equilibrium and numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung sung gyo and Chung in gyo (1994) were used to analyze test results Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the stress distributions acting in the backfill and to compare with test results. From results of surcharge test with model wall being very close to the slope, analyzed results by the modified silo theory and to be in the better agreements than other methods.

  • PDF

Mechanical Characterization of Lead-Rubber Bearing by Horizontal Shear Tests (수평 전단시험에 의한 납 삽입 적층고무베어링의 기계적 특성 평가)

  • 전영선;최인길;유문식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.1-10
    • /
    • 2001
  • In this study, the horizontal loading tests of 10ton and 200ton capacity of LRB(lead-rubber bearing) were performed for the evaluation of the dynamic properties of the LRB. It is noted from the test results that dynamic properties of the LRB are dependent on the loading frequency, vertical load and shear strain. A Slender bearing subjected to large deformation will tend to develop plastic hinges in the end regions of the lead plug which will cause the failure of the lead plug. It is recommended that the appropriate mechanical properties of LRB considering the level of structural response and input ground motion should be used in the design of base isolated structures.

  • PDF

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.

Evaluation of Spudcan Penetration/Extraction Behavior in Uniform Sand and Clay (모래와 점토 단일지반에서의 스퍼드캔 관입/추출 거동 평가)

  • Yoo, Jin-Kwon;Park, Duhee;Kang, Jaemo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.17-28
    • /
    • 2017
  • We performed laboratory spudcan penetration and extraction tests considering various geometries. Jumunjin sand, representative standard sand in South Korea, and kaolinite were used for uniform sand and clay layers, respectively. The measured vertical bearing and pull-out capacities were compared to empirical equations for shallow foundations. The results showed good agreement between measured and calculated bearing capacity from laboratory test and previous study at shallow depths. The effect of spudcan geometry is shown to depend on site condition. The influence of a sharp spigot is not significant in clays. The slope of the spudcan surface is shown to influence the pull-out capacity. The characteristics of spudcan penetration and extraction behavior considering various geometries can be a useful reference for determining spudcan geometries.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.