DOI QR코드

DOI QR Code

Evaluation of Spudcan Penetration/Extraction Behavior in Uniform Sand and Clay

모래와 점토 단일지반에서의 스퍼드캔 관입/추출 거동 평가

  • Yoo, Jin-Kwon (Dept. of Civil and Environmental Engrg., Hanyang Univ.) ;
  • Park, Duhee (Dept. of Civil and Environmental Engrg., Hanyang Univ.) ;
  • Kang, Jaemo (Dept. of Civil and Environmental Engrg., Hanyang Univ.)
  • 유진권 (한양대학교 건설환경공학과) ;
  • 박두희 (한양대학교 건설환경공학과) ;
  • 강재모 (한양대학교 건설환경공학과)
  • Received : 2016.07.06
  • Accepted : 2017.03.22
  • Published : 2017.03.31

Abstract

We performed laboratory spudcan penetration and extraction tests considering various geometries. Jumunjin sand, representative standard sand in South Korea, and kaolinite were used for uniform sand and clay layers, respectively. The measured vertical bearing and pull-out capacities were compared to empirical equations for shallow foundations. The results showed good agreement between measured and calculated bearing capacity from laboratory test and previous study at shallow depths. The effect of spudcan geometry is shown to depend on site condition. The influence of a sharp spigot is not significant in clays. The slope of the spudcan surface is shown to influence the pull-out capacity. The characteristics of spudcan penetration and extraction behavior considering various geometries can be a useful reference for determining spudcan geometries.

본 연구에서는 다양한 형상 및 서로 다른 스케일로 설계된 스퍼드캔을 통한 관입/추출 실내 시험을 수행하였다. 이를 위해 국내의 대표적인 표준사인 주문진 모래와 카올리나이트를 사용하여 모래지반과 점토지반을 각각 조성하였다. 관입 시험을 통해 측정된 지지력은 기존 연구자들에 의해 제시된 얕은 기초 지지력 경험식으로 계산된 지지력과 비교하였으며, 스퍼드캔의 형상에 따른 관입/추출 시의 지지력 및 추출 시 요구되는 추출력의 차이를 비교 분석하였다. 분석 결과, 기존 연구자들에 의해 제시된 지지력 산정 경험식은 실제 관입을 통해 측정되는 지지력을 얕은 심도에서 비교적 정확하게 예측할 수 있는 것으로 나타났다. 형상에 따른 차이는 모래지반과 점토지반에서 각각 다르게 나타났으며 상대적으로 연약한 점토지반에서 날카로운 spigot으로 인한 영향이 적은 것으로 나타났다. 또한 스퍼드캔의 경사는 관입 시 보다는 추출 시 요구되는 추출력에 더 큰 영향을 주는 것으로 나타났다. 본 연구를 통해 나타난 모래와 점토지반에서의 스퍼드캔 형상 별 관입/추출 거동 특성을 통해 스퍼드캔 설계 시 형상에 따른 지지력 및 추출력 특성파악에 참고자료가 될 수 있을 것으로 판단된다.

Keywords

References

  1. Baligh, M.M. and Scott, R.F. (1976), "Analysis of Wedge Penetration in Clay", Geotechnique, Vol.26, No.1, pp.185-208. https://doi.org/10.1680/geot.1976.26.1.185
  2. Berry, D.S. (1935), "Stability of Granular Mixtures", ASTM, Vol. 35, pp.491-507.
  3. Bolton, M.D. (1986), "The Strength and Dilatancy of Sands", Geotechnique, Vol.36, No.1, pp.65-78. https://doi.org/10.1680/geot.1986.36.1.65
  4. Cassidy, M. and Houlsby, G. (2002), "Vertical Bearing Capacity Factors for Conical Footings on Sand", Geotechnique, Vol.52, No.9, pp.687-692. https://doi.org/10.1680/geot.2002.52.9.687
  5. Cerato, A.B. and Lutenegger, A.J. (2007), "Scale Effects of Shallow Foundation Bearing Capacity on Granular Material", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, No.10, pp.1192-1202. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1192)
  6. De Beer, E. (1963), "The Scale Effect in the Transposition of the Results of Deep-sounding Tests on the Ultimate Bearing Capacity of Piles and Caisson Foundations", Geotechnique, Vol.13, No.1, pp.39-75. https://doi.org/10.1680/geot.1963.13.1.39
  7. Frydman, S. and Burd, H.J. (1997), "Numerical Studies of Bearingcapacity Factor N ${\gamma}$", Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.1, pp.20-29. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(20)
  8. Gottardi, G., Houlsby, G., and Butterfield, R. (1999), "Plastic Response of Circular Footings on Sand under General Planar Loading", Geotechnique, Vol.49, No.4, pp.453-470. https://doi.org/10.1680/geot.1999.49.4.453
  9. Govoni, L., Gourvenec, S., and Gottardi, G. (2010), "Centrifuge Modeling of Circular Shallow Foundations on Sand", International Journal of Physical Modelling in Geotechnics, Vol.10, No.2, pp. 35-46. https://doi.org/10.1680/ijpmg.2010.10.2.35
  10. Hansen, J.B. (1970), "A Revised and Extended Formula for Bearing Capacity", Akademiet for de Tekniske Videnskaber, Vol.28, pp.5-11.
  11. Hossain, M. and Randolph, M. (2010a), "Deep-penetrating Spudcan Foundations on Layered Clays: Centrifuge Tests", Geotechnique, Vol.60, No.3, pp.157-170. https://doi.org/10.1680/geot.8.P.039
  12. Hossain, M. and Randolph, M. (2010b), "Deep-penetrating Spudcan Foundations on Layered Clays: numerical analysis", Geotechnique, Vol.60, No.3, pp.171-184. https://doi.org/10.1680/geot.8.P.040
  13. Hossain, M.S. and Dong, X. (2013), "Extraction of Spudcan Foundations in Single and Multilayer Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol.140, No.1, pp.170-184.
  14. Houlsby, G. and Martin, C. (2003), "Undrained Bearing Capacity Factors for Conical Footings on Clay", Geotechnique, Vol.53, No. 5, pp.513-520. https://doi.org/10.1680/geot.2003.53.5.513
  15. Houlsby, G. and Wroth, C. (1984), "Calculation of Stresses on Shallow Penetrometers and Footings", Proc IUTAM/IUGG Seabed Mechanics, Newcastle, pp.107-112.
  16. Hu, P., Stanier, S., Cassidy, M., and Wang, D. (2013), "Predicting Peak Resistance of Spudcan Penetrating Sand Overlying Clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No.2, 04013009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001016
  17. InSafeJIP (2011), InSafeJIP: Improved guidelines for the prediction of geotechnical performance of spudcan foundations during installation and removal of jack-up units, RPS Energy.
  18. ISO (2009), Petroleum and natural gas industries-Site-specific assessment of mobile offshore units-, International Organization for Standardization.
  19. Martin, C. and Houlsby, G. (2000), "Combined Loading of Spudcan Foundations on Clay: Laboratory Tests", Geotechnique, Vol.50, No.4, pp.325-338. https://doi.org/10.1680/geot.2000.50.4.325
  20. Martin, C.M. (1994), Physical and Numerical Modelling of Offshore Foundations under Combined Loads, PhD thesis, University of Oxford, UK.
  21. Meyerhof, G.G. (1963), "Some Recent Research on the Bearing Capacity of Foundations", Canadian Geotechnical Journal, Vol. 1, No.1, pp.16-26. https://doi.org/10.1139/t63-003
  22. Ports, D. and Zdravkovic, L. (2001), "Finite Element Analysis in Geotechnical Engineering": Thomas Telford, London.
  23. Randolph, M., Jamiolkowski, M., and Zdravkovic, L. (2004), "Load Carrying Capacity of Foundations", Proc. Skempton Memorial Conf., London, 1, pp.207-240.
  24. Rapoport, V. and Young, A. (1985), "Uplift Capacity of Shallow Offshore Foundations", Uplift Behavior of Anchor Foundations in Soil:: ASCE, pp.73-85.
  25. SNAME (2008), Guideline for site specific assessment of mobile jack-up units, The society of naval architects & marine engineers, New Jersy, City, NJ, USA.
  26. Tan, F. (1990), Centrifuge and numerical modelling of conical footings on sand, PhD thesis, University of Cambridge, UK.
  27. Teh, K. and Leung, C. (2010), "Centrifuge Model Study of Apudcan Penetration in Sand Overlying Clay", Geotechnique, Vol.60, No. 11, pp.825-842. https://doi.org/10.1680/geot.8.P.077
  28. Terzaghi, K. (1943), Theory of Consolidation, Wiley Online Library.
  29. Vesic, A. (1975), "Bearing Capacity of Shallow Foundations, Foundation Engineering Handbook, Winterkorn and Fang, Ed": Van Nostrand Reinhold Company, New York.
  30. Vesic, A.S. (1969), Breakout resistance of objects embedded in ocean bottom, DTIC Document.
  31. Zhang, Y., Bienen, B., Cassidy, M.J., and Gourvenec, S. (2011), "The Undrained Bearing Capacity of a Spudcan Foundation under Combined Loading in Soft Clay", Marine Structures, Vol.24, No. 4, pp.459-477. https://doi.org/10.1016/j.marstruc.2011.06.002