Browse > Article
http://dx.doi.org/10.12652/Ksce.2019.39.2.0335

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling  

Wang, Cheng-Can (University of Science & Technology)
Jang, Youngeun (Ulsan National Institute of Science and Technology)
Kim, Seok-Jung (Korea Institute of Civil Engineering and Building Technology)
Han, Jin-Tae (Korea Institute of Civil Engineering and Building Technology)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.39, no.2, 2019 , pp. 335-344 More about this Journal
Abstract
Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.
Keywords
Vertical extension; Foundation underpinning; Micropile; Waveform micropile; Numerical analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Babu, G. S., Murthy, B. S., Murthy, D. S. N. and Nataraj, M. S. (2004). "Bearing capacity improvement using micropiles: a case study." GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, pp. 692-699.
2 Bruce, D. A, Ingle, J. L. and Jones MR. (1985). "Recent Examples of Underpinning Using Minipiles." 2nd Int. Conf. on Structural Faults and Repairs, London, pp. 13-28.
3 Cole, K. W. (1993). "Conventional piles in underpinning." In underpinning and Retention, Springer US, pp. 63-83.
4 Esmaeili, M., Nik, M. G. and Khayyer, F. (2012). "Experimental and numerical study of micropiles to reinforce high railway embankment." International Journal of Geomechanics, Vol. 13, pp. 729-744.   DOI
5 Federal Highway Administration (FHWA) (2005). Micropile Design and Construction: Reference Manual, Federal Highway Administration (FHWA) U.S. Department of Transportation, Washington, D.C. Publication No. FHWA- NHI-05-039.
6 Han, J. and Ye, S. L. (2006a). "A field study on the behavior of micropiles in clay under compression or tension." Canadian Geotechnical Journal, Vol. 43, No. 1, pp. 19-29.   DOI
7 Han, J. and Ye, S. L. (2006b). "A field study on the behavior of a foundation underpinned by micropiles." Canadian Geotechnical Journal, Vol. 43, pp. 30-42.   DOI
8 Isam, S., Hassan, A. and Mhamed, S. (2012). "3D elastoplastic analysis of the seismic performance of inclined micropiles." Computers and Geotechnics, Vol. 39, pp. 1-7.   DOI
9 Jang, Y. E. and Han, J. T. (2014). "Development on the micropile for applying to artificial ground above railroad site." Advanced Science and Technology Letter, Vol. 55, pp. 43-46.   DOI
10 Jang, Y. E. and Han, J. T. (2015). "Study of load capacity of waveform micropile by centrifuge test." The Twenty-fifth (2015) International Ocean and Polar Engineering Conference, pp. 700-706.
11 Jang, Y. E. and Han, J. T. (2017). "Field study on axial bearing capacity and load transfer characteristic of waveform micropile." Canadian Geotechnical Journal, Vol. 55, No. 5, pp. 653-665.   DOI
12 Jang, Y. E. and Han, J. T. (2018). "Analysis of the shape effect on the axial performance of a waveform micropile by centrifuge model test." Acta Geotechnica, pp. 1-14.
13 KHS (2008). Korea Highway Bridge Design Standard, Explanation, pp. 885-887 (in Korean).
14 Ministry of Land, Infrastructure and Transport (MOLIT) (2013). Housing Act, Korea Ministry of Land, Infrastructure and Transport, p. 2.
15 Korea Institute of Civil Engineering and Building Technology (KICT) (2013). Development of Pre-loading Method for Reinforcement Piles of Apartment Remodeling (1). KICT2013-260, 23-61 (in Korean).
16 Koichi, O., Hiroshi, K. and Motofumi, S. (1996). "Up-down vibration effects on bridge piers." Japanese Geotechnical Society, Vol. 36, pp. 211-218.
17 Lizzi, F. (1982). The pali radice (root piles). "Symposium on soil and rock improvement techiques including geotextiles." Reinforced Earth and Modern Piling Methods, Bangkok, Paper D-3.
18 Plaxis, B. V. (2005). PLAXIS User's manual.
19 Randolph, M. (1994). "Design methods for pile groups and piled rafts." Pro. of 13th ICSMFE, New Delhi, India, Vol. 5, pp. 61-82.
20 Sadek, M. and Isam, S. (2004). "Three-dimensional finite element analysis of the seismic behavior of inclined micropiles." Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 473-485.   DOI
21 Terzaghi, K. and Peck, R. B. (1967). Soil Mechanics in Engineering Practice, 2nd ed, John Wiley and Sons, New York.
22 Thorburn, S. and Littlejohn, G. S. (2014). Underpinning and Retention, CRC Press.
23 Touma, F. T. and Reese, L. C. (1974). "Behavior of bored piles in sand." Journal Geotechnical Engineering Division, ASCE, Vol. 100, No. 7, pp. 749-761.   DOI
24 Wang, C. C. and Han, J. T. (2017). "3D FEM analysis on load distribution behavior for pile foundation during vertical extension of apartment building." Pro. of 19th Int. Conf. on Soil Mechanics and Geotechnical Engineering, pp. 1929-1934.
25 Wang, C., Jang, Y., Kim, S. and Han, J. T. (2018b). "Effect of waveform micropile on foundation underpinning during building remodeling with vertical extension." GeoChina 2018, pp. 120-130.
26 Wang, C. C., Han, J. T., Jang, Y. E., Ha, I. S. and Kim, S. J. (2018a). "Study on the effectiveness of preloading method on reinforcement of the pile foundation by 3D FEM analysis." Journal of the Korean Geotechnical Society, Vol. 34, No. 1, pp. 47-57 (in Korean).   DOI