DOI QR코드

DOI QR Code

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong, Qin (The Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Wang, Song (The Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Peng, Feng (College of Civil Engineering, Tsinghua University) ;
  • Zhuo, Xi (The Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Tongqing, Zhang (The Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University)
  • Received : 2022.05.04
  • Accepted : 2022.12.06
  • Published : 2023.01.10

Abstract

To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Nos. 51378108 and 51678137) and the Fundamental Research Funds for the Central Universities (Nos. 2242022k30031, 2242022k30033).

References

  1. ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  2. Chang, G.A. and Mander, J.B. (1994), "Seismic energy based fatigue damage analysis of bridge columns. II: Evaluation of seismic demand", Report No. NCEER-94-0013, State Univ. of New York, Buffalo, NY.
  3. Elsanadedy, H.M., Al-Salloum, Y.A., Alrubaidi, M.A., Almusallam, T.H., Siddiqui, N.A. and Abbas, H. (2020), "Upgrading of precast RC beam-column joints using innovative FRP/steel hybrid technique for progressive collapse prevention", Constr. Build. Mater., 268, 121130. https://doi.org/10.1016/j.conbuildmat.2020.121130.
  4. Feng, P., Qiang, H.L., Qin, W.H. and Gao, M. (2017), "A novel kinked rebar configuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame structures", Eng. Struct., 147, 752-767. https://doi.org/10.1016/j.engstruct.2017.06.042.
  5. GB 50010 (2010), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development, Beijing, China.
  6. GB 50011 (2010), Code for Seismic Design of Buildings, Ministry of Housing and Urban-Rural Development, Beijing, China.
  7. Ge, W.J., Ashour, A.F., Yu, J., Gao, P., Cao, D.F. and Cai, C.  (2019), "Flexural behavior of ecc-concrete hybrid composite beams reinforced with FRP and steel bars", J. Compos. Constr., 23(1), 1. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000910.
  8. Han, T.S., Feenstra, P.H. and Billington, S.L. (2003), "Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading", ACI Struct. J., 100(6), 749-757. https://doi.org/10.14359/12841.
  9. Kang, S.B., Tan, K.H. and Yang, E.H. (2015), "Progressive collapse resistance of precast beam-column sub-assemblages with engineered cementitious composites", Eng. Struct., 98, 186-200. https://doi.org/10.1016/j.engstruct.2015.04.034.
  10. Kang, S.B., Tan, K.H., Zhou, X.H. and Yang, B. (2017), "Experimental investigation on shear strength of engineered cementitious composites", Eng. Struct., 143, 141-151. https://doi.org/10.1016/j.engstruct.2017.04.019.
  11. Kh, H.M., Ozakca, M. and Ekmekyapar, T. (2017), "Nonlinear FE modelling and parametric study on flexural performance of ECC beams", Struct. Eng. Mech., 62(1), 21-31. https://doi.org/10.12989/sem.2017.62.1.021
  12. Kim, J. and Shin, W.S. (2013), "Retrofit of RC frames against progressive collapse using prestressing tendons", Struct. Des. Tall Spec. Build., 22(4), 349-361. https://doi.org/10.1002/tal.691.
  13. Li, V.C. and Leung, C. (1992), "Steady-state and multiple cracking of short random fiber composites", J. Eng. Mech., 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733- 9399(1992)118:11(2246).
  14. Pan, W.H., Tao, M.X. and Nie, J.G. (2017), "Fiber beam-column element model considering reinforcement anchorage slip in the footing", Bull. Earthq. Eng., 15(3), 991-1018. https://doi.org/10.1007/s10518-016-9987-3.
  15. Pham, A.T. and Tan, K.H. (2017), "Experimental study on dynamic responses of reinforced concrete frames under sudden column removal applying concentrated loading", Eng. Struct., 139, 31-45. https://doi.org/10.1016/j.engstruct.2017.02.002.
  16. Qian, K. and Li, B. (2012), "Experimental and analytical assessment on RC interior beam-column subassemblages for progressive collapse", J. Perform. Constr. Facil., 26(5), 576-589. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000284.
  17. Qiang, H.L., Yang, J.X., Feng, P. and Qin, W.H. (2020), "Kinked rebar configurations for improving the progressive collapse behaviours of RC frames under middle column removal scenarios", Eng. Struct., 211, 110425. https://doi.org/10.1016/j.engstruct.2020.110425.
  18. Qin, W.H., Liu, X.Y., Xi, Z. and Huang, Z.T. (2021), "Experimental research on the progressive collapse resistance of concrete beam-column sub-assemblages reinforced with steelFRP composite bar", Eng. Struct., 233, 111776. https://doi.org/10.1016/j.engstruct.2020.111776.
  19. Saenz, L.P. (1964), "Discussion of 'Equation for the stress-strain curve of concrete' by P. Desayi, and S. Krishnan", ACI J. Proc., 61, 1229-1235.
  20. Sahmaran, M., Li, V.C. and Andrade. (2008), "Corrosion resistance performance of steel-reinforced engineered cementitious composite beams", ACI Mater. J., 105(3), 243-250. https://doi.org/10.14359/19820.
  21. Sasani, M., Bazan, M. and Sagiroglu. S. (2007) "Experimental and analytical progressive collapse evaluation of actual reinforced concrete structure", ACI Struct. J., 104(6), 731-739. https://doi.org/10.1016/j.jhydrol.2007.08.018.
  22. Sezen, H. and Setzler, E.J. (2008), "Reinforcement slip in reinforced concrete columns", ACI Struct. J., 105(3), 280-289. https://doi.org/10.14359/19787.
  23. Spagnoli, A. (2009), "A micromechanical lattice model to describe the fracture behaviour of engineered cementitious composites", Comp. Mater. Sci., 46(1), 7-14. https://doi.org/10.1016/j.commatsci.2009.01.021.
  24. Tsai, M.H. (2016), "Chord rotation demand for effective catenary action of RC beams under gravitational loadings", Struct. Eng. Mech., 58(2), 327-345. https://doi.org/10.12989/sem.2016.58.2.327.
  25. Yang, Y., Lepech, M.D., Yang, E.H. and Li, V.C. (2009), "Autogenous healing of engineered cementitious composites under wet-dry cycles", Cement Concrete Res., 39(5), 382-390. https://doi.org/10.1016/j.cemconres.2009.01.013.
  26. Yu, J. and Tan, K.H. (2013), "Structural behavior of RC beam-column subassemblages under a middle column removal scenario", J. Struct. Eng., 139(2), 233-250. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000658.
  27. Yu, J. and Tan, K.H. (2014), "Special detailing techniques to improve structural resistance against progressive collapse", J. Struct. Eng., 140(3), 04013077. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000886
  28. Yu, K.Q., Li, L.Z., Yu, J.T., Wang, Y.C., Ye, J.H. and Xu, Q.F. (2018), "Direct tensile properties of engineered cementitious composites: A review", Constr. Build. Mater., 165, 346-362. https://doi.org/10.1016/j.conbuildmat.2017.12.124.
  29. Yu, Z., Zhao, C.Z., Yan, Y., Xue, M.G. and Ying, Z.Y. (2016), "Analysis of crack microstructure, self-healing products, and degree of self-healing in engineered cementitious composites", J. Mater. Civil Eng., 28(6), 04016017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001533.
  30. Yuan, F., Pan, J.L. and Leung, C. (2014), "Mechanical behaviors of steel reinforced ECC or ECC/concrete composite beams under reversed cyclic loading", J. Mater. Civil Eng., 26(8), 04014047. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000935.
  31. Zheng, P.D., Guo, Z., Hou, W. and Lin, G. (2021), "Compressive behavior of steel stirrups-confined square engineered cementitious composite (ECC) columns", Adv. Concrete Constr., 11(3), 193-206. https://doi.org/10.12989/acc.2021.11.3.193.
  32. Zhou, M., Shao, Z. and Hassanein, M.F. (2020), "Bending behaviour of reinforced concrete/engineered cementitious composite beams", Mag. Concrete Res., 73(16), 810-818. https://doi.org/10.1680/jmacr.19.00380 .