DOI QR코드

DOI QR Code

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests

실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석

  • Lee, Chul-Hee (Dept. of Geotehcnical Engrg. Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Shin, Eun-Chul (Dept. of Civil and Environment Engrg., Incheon National Univ.) ;
  • Yang, Tae-Chul (Aceall co., Ltd.)
  • Received : 2022.05.30
  • Accepted : 2022.07.03
  • Published : 2022.07.31

Abstract

The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.

중공블록 기초공법은 육각형의 벌집구조로 제작된 콘크리트 중공블록을 혼합쇄석과 함께 치환 설치하여 연약지반을 보강하고 인위적인 층상지반을 형성하여 얕은 기초의 지지력 증가와 침하량을 감소시키는 지반보강 기초공법이다. 벌집구조의 중공블록은 기하학적으로 경제적인 구조임과 동시에 힘을 균형 있게 배분하는 안정적인 구조로 기초와 쇄석치환 보강층 사이에서 보강재로써 보강효과를 유발하는 것을 단편적으로 확인하였으나, 거동특성 규명은 아직 미비한 상태이다. 본 연구에서는 실내모형실험을 통해 보강재로써 중공블록의 보강효과를 파악하기 위해 실내 평판재하시험을 수행하였다. 하중-침하 곡선에서 비채움 조건(A-1-N)에서는 관입전단파괴가 발생한 반면에 채움 조건(A-1-F)은 항복이 나타나지 않은 선형 곡선을 나타내며, 원지반 대비 3배의 보강효과를 확인하였다. 중공블록의 구속효과 모식도를 바탕으로 중공블록 콘크리트부의 접지응력과 중공부 구속효과에 의한 수직응력 그리고 수평응력이 작용한 내벽의 내주면마찰력에 대한 관계식을 제안하였다. 관계식 계산결과 중공블록의 콘크리트부의 접지력은 재하하중의 약 65%이고, 중공부 단면에 작용하는 구속 수직력은 약 16.5%이고, 내주면마찰력은 약 18.5%로 분담하는 것으로 나타났다. 본 연구를 통해 중공블록이 보강재로써 상재하중이 작용할 때, 중공블록의 중공부 하단에서는 구속효과로 수직응력이 발생하고, 수평방향이 구속상태인 내부 모래에서 수평응력이 내벽에 작용하여 내주면마찰력이 발생하여 중공블록 콘크리트의 관입을 억제하고 선단 응력이 감소하는 거동특성을 규명하였다.

Keywords

Acknowledgement

이 연구는 (주)에이스올의 연구비 지원으로 수행되었음을 알립니다. 이에 감사드립니다.

References

  1. Bathurst, R.J. and Karpurapu, R. (1993), "Large Scale Triaxial Compression Testing of Geocell Reinforced Granular Soils", ASTM Geotechnical Testing Journal, Vol.16, No.3, pp.296-303. https://doi.org/10.1520/GTJ10050J
  2. Boussinesq, J. (1883), "Application des Potentials a L'Etude de L'Equilibre et du Mouvement des Solides Elastiques", Gauthier-Villars, Paris.
  3. Das. B.M. (2008), Advanced Soil Mechanics, Taylor & Francis.
  4. Jaky, J. (1944), "The Coefficient of Earth Pressure at Rest", Journal of the Society of Hungarian Architects and Engineering, Vol.78, No.22, pp.355-358.
  5. Jeong, S.S. and Ko, J.Y. (2016), "Influence Factors on the Degree of Soil Plugging for Open-Ended Piles", Journal of the Korean Geotechnical Society, Vol.32, No.5, pp.27-36. https://doi.org/10.7843/KGS.2016.32.5.27
  6. Koerner, R.M. (1990), Designing with Geosynthetics, Prentice Hall.
  7. Ko, J.Y. (2015), Evaluation of Bearing Capacity for Open-Ended Piles with Soil Plugging, Ph.D thesis, Yonsei University, Seoul.
  8. Kumar, J. and Madhusudhan, B. (2010), "Effect of Relative Density and Confining Pressure on Poisson Ratio from Bender and Extender Elements Tests", Geotechnique, Vol.60, No.7, pp.561-567. https://doi.org/10.1680/geot.9.T.003
  9. Lee, K.C. (2002), A Study on the Bearing Capacity of Shallow Foundation Reinforced by Geocell, Ph.D Thesis, Kyunghee University, Seoul.
  10. Paikowsky, S.G. (1989), A Static Evaluation of Soil Plug Behavior with Application to the Pile Plugging Problem, Ph.D thesis, Massachusetts Institute of Technology, Cambridge, MA.
  11. Paikowsky, S.G. (1990), "The Mechanism of Pile Plugging in Sand", Proceedings of the 22nd Offshore Technology Conference, OTC 6490, 4, pp.593-604.
  12. Kulhawy, F.H. (1983), "Transmission Line Structure Foundation for Uplift-Compression Loading", Report No. EL-2870, Electric Power Research Institute.
  13. Kulhawy, F.H. (1991), Drilled Shaft Foundation, Foundation Engineering Handbook, Van Nostrand Reinhold (Wiley).
  14. Yamahara, H. (1964), "Plugging Effects and Bearing Mechanism of Steel Pipe Piles", Transportation of the Architectural Institute of Japan, Vol.96, pp.28-35. https://doi.org/10.3130/aijsaxx.96.0_28
  15. Zhou, H. and Wen, X. (2008), "Model Studies on Geogrid- or Geocell-Reinforced Sand Cushion on Soft Soil", J. of Geotextiles and Geomembranes, Vol.26, Issue 3, pp.231-238. https://doi.org/10.1016/j.geotexmem.2007.10.002