• Title/Summary/Keyword: velocity

Search Result 23,138, Processing Time 0.044 seconds

Damage of Composite Laminates by Low-Velocity Impact (저속충격에 의한 복합재료 적층판의 손상)

  • Nam, Ki-Woo;Ahn, Seok-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.284-288
    • /
    • 2003
  • This study was investigated the nondestructive characteristics of the damage caused by low-velocity impact on symmetric cross-ply laminates. These laminates were $[0^{\circ}/90^{\circ}]{_{16s,}}\;{_{24s,}}\;{_{32s,}}\;{_{48s}}$, that is, the thickness was 2, 3, 4 and 6 mm. The impact machine, model 8250 Dynatup Instron, was used a drop-weight type with gravity. The impact velocities used in experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec. The load and deformation were increased as impact velocity increase. Even if the load increased with laminates thickness in same impact velocity, the deformation decreased. The extensional velocity was a quick as laminate thickness increase in same impact velocity and as impact velocity increase in same laminate thickness. In ultrasonic scans, damaged area was represented an dimmed zone. This is due to the fact that the wave, after having been partially reflected by the defects, has not enough energy to tough the oposite side or to come back from it. The damaged laminate areas were different according to the laminate thickness and the impact velocity. The extensional velocities became lower in if direction and higher in $0^{\circ}$ direction when the size of the defects increases. But, it was difficult to draw any conclusion for the extensional velocities in $45^{\circ}$ direction.

  • PDF

Damage of Composite Laminates by Low-Velocity Impact (저속충격에 의한 복합재료 적층판의 손상)

  • AHN SEOK-HWAN;KIM JIN-WOOK;DO JAE-YOON;KIM HYUN-SOO;NAM KI-WOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.39-43
    • /
    • 2005
  • The study investigated the nondestructive characteristics of damage, caused by law-velocity impact, on symmetric cross-ply laminates, composed of [0o/90o]16s, 24s, 32s, 48s. The thickness of the laminates was 2, 3, 4 and 6 mm, respectively. The impact machine used, Model 8250 Dynatup Instron, was a drop-weight type that employed gravity. The impact velocities used in this experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec, respectively. Both the load and the deformation increased when the impact velocity was increased. Further, when the load increased with the laminate thickness in the same impact velocity, the deformation still decreased. The extensional velocity was quick, as the laminate thickness increased in the same impact velocity and the impact velocity increased in the same laminate thickness. In the ultrasonic scans, the damaged area represented a dimmed zone. This is due to the fact that the wave, after the partial reflection by the deflects, does not have enough energy to touch the opposite side or to come back from it. The damaged laminate areas differed, according to the laminate thickness and the impact velocity. The extensional velocities are lower in the 0o direction and higher in the 90o direction, when the size of the defect increases. However, it was difficult to draw any conclusion for the extensional velocities in the 45o direction.

Comparison of the Kinematic Variables in the Badminton Smash Motion (숙련도에 따른 배드민턴 스매쉬 동작의 운동학적 변인 비교)

  • So, Jae-Moo;Han, Sang-Min;Seo, Jin-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • The purpose of this study was to analyze kinematic variables in the badminton smash motion through 3-dimensional image analysis. The kinematic variables were velocity of joints in upper limbs, the angle of wrist in the impact, and the angular velocity of the top of racket head. The smash motions of four male badminton players in H University and four male students at department of the physical education in K University who were not majoring in badminton were analyzed kinematically and the attained conclusions were as follow. 1. The velocity of segments in upper limbs of the unskilled group was faster than that of the skilled group. The movement pattern was fast back swing-slow impact moment-fast fellow through in the unskilled group, but slow back swing-fast impact moment-slow follow through in the sullied group. 2. As the BS phases, the velocity of segment in right shoulder was different significantly between groups. Right elbow and right wrist segments, velocity of racket head was different significantly between groups(p<.05) by IP phases. As the FT phases, there was no significant difference. 3. The angle of right wrist at the impact, the angle of palm flexion and the angle of palm flexion in aspect were shown that the skilled group was higher than unskilled group. There was no significant difference. 4. The velocity of racket head was shown that the unskilled group has fast velocity, but the angle velocity was shown the unskilled group has slow. 5. The angle velocity of racket head in aspect were no significant difference between groups, but maximal angle velocity was different significantly between groups(p<.05).

Determination of Tricuspid Regurgitation Velocity/Pulmonary Artery Flow Velocity Time Integral in Dogs with Pulmonary Hypertension

  • Kim, Seungji;Oh, Dayoung;Lee, Siheon;Hong, Sungkyun;Choi, Mincheol;Yoon, Junghee
    • Journal of Veterinary Clinics
    • /
    • v.37 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • This retrospective, echocardiographic study using 144 dogs with clear systolic tricuspid regurgitation on Doppler echocardiography was performed to determine the diagnostic value of the systolic tricuspid regurgitation velocity/pulmonary artery flow velocity time integral to predict the Doppler estimates of dogs with tricuspid regurgitation pressure gradient compared with other cardiac indices of pulmonary hypertension, and to investigate a cutoff value to select patients with a potentially poor outcome. The systolic tricuspid regurgitation velocity/pulmonary artery flow velocity time integral increased significantly as the severity of pulmonary hypertension increased and had a correlation coefficient that was analogous to those of other conventional cardiac indices. A cutoff value greater 1.65 provided the best-balanced sensitivity (84%) and specificity (80%) in determining patients with a poor prognosis. In conclusion, the systolic tricuspid regurgitation velocity/pulmonary artery flow velocity time integral is readily obtained using routine echocardiography and could provide a non-invasive, novel, and supplementary index for evaluating dogs with pulmonary hypertension as useful prognostic criteria, particularly in those with advanced pulmonary hypertension.

Effect on Varying the Impact Velocity in the Controlled Cortical Impact Injury Model : Injury Severity and Impact Velocity

  • Ji, Yong-Cheol;Min, Byung-Kook;Park, Seung-Won;Hwang, Sung-Nam;Hong, Hyun-Jong;Suk, Jong-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Objective : A study of the histopathologic and neurobehavioral correlates of cortical impact injury produced by increasing impact velocity using the controlled cortical impact[CCI] injury model is studied. Methods : Twenty-four Sprague-Dawley rats [$200{\sim}250g$] were given CCI injury using a pneumatically driven piston. Effect of impact velocity on a 3mm deformation was assessed at 2.5m/sec [n=6], 3.0m/sec [n=6], 3.5m/sec [n=6], and no injury [n=6]. After postoperative 24hours the rats were evaluated using several neurobehavioral tests including the rotarod test, beam-balance performance, and postural reflex test. Contusion volume and histopathologic findings were evaluated for each of the impact velocities. Results : On the rota rod test, all the injured rats exhibited a significant difference compared to the sham-operated rats and increased velocity correlated with increased deficit [p<0.001]. Contusion volume increased with increasing impact velocity. For the 2.5, 3.0, and 3.5m/sec groups, injured volumes were $18.8{\pm}2.3mm^3$, $26.8{\pm}3.1mm^3$, and $32.5{\pm}3.5mm^3$, respectively. In addition, neuronal loss in the hippocampal sub-region increased with increasing impact velocity. In the TUNEL staining, all the injured groups exhibited definitely positive cells at pericontusional area. However, there were no significant differences in the number of positive cells among the injured groups. Conclusion : Cortical impact velocity is a critical parameter in producing cortical contusion. Severity of cortical injury is proportional to increasing impact velocity of cortical injury.

Determination of Critical Swimming Velocity for Crucian Carp for Fishway Design (어도 설계를 위한 붕어의 한계유영유속 결정 연구)

  • Se Won Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.258-265
    • /
    • 2023
  • Fishways installed in Korea usually generate high-velocity flows and low water depth that impede fish movement, despite the fact that most fish are migratory or move to survive. Moreover, domestic design standards for fishways fail to consider the swimming ability of various fish species that live in rivers. Therefore, it is necessary to establish design standards for fishways to function properly, which requires research on the swimming performance of domestic migratory fish and the hydraulic characteristics of fishways. Accordingly, in this research, the swimming performance of fish was objectively analyzed by applying the incremental velocity and fixed velocity methods to carp, respectively, and the critical swimming velocity was presented. As the result, it was appropriate to set the critical swimming velocity to 0.7 m/s - 0.8 m/s for incremental velocity and 0.8 m/s for fixed velocity. Comprehensively analyzing the two experimental methods, the critical swimming velocity for designing the fishway for carp can be determined to be about 0.8 m/s. In the future, it will be necessary to analyze the swimming performance of various migratory fish and prepare fishway design standards for each species.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(4) - Velocity Profile(2) (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(4) - 유속분포(2))

  • Park, Chanjun;Sung, Jaeyong;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.242-254
    • /
    • 2016
  • This paper is the forth investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous works, it was concluded that the assumption of the solid rotation might cause serious problems and both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75B plane. Also particle image velocimetry (PIV) measurement at this position showed that the real velocity profile was far from the assumption of ISM evaluation. In this paper, the planar velocity profiles were measure from 1.75B to 6.00B position by PIV and the characteristics were examined according to the valve angles and lifts for further investigations about the effect of the position on the velocity profile. The results show that $26^{\circ}$ valve angle is always an unique exceptional case in all aspects. If the valve angle is $21^{\circ}$ and below, the planar velocity profiles according to the lift and the position are similar to each other, however, the tangential velocity curves along with the radial direction have common tendencies up to $16^{\circ}$ angle. Also the well arranged swirl behaviors are generally observed at the position above 3.00B and the velocity contour lines come closer to the concentric circle as the valve lift increases. In addition, the gradient of tangential velocity along with the radial direction from the swirl center becomes stable and constant as the position goes downstream. Concurrently the velocity gradient is larger to the eccentric direction of the center. In the meantime the tangential velocity curves along with the radial direction are irregular and various at 1.75B, however, they become regular and reach higher level as the evaluation position goes downstream. At this time the curves of 4.50B are the best fitted to the ideal one. On the other hand in an exceptional case, $26^{\circ}$, the velocity contours are very complicated over 6mm valve lift regardless the position and the gradient increases to the opposite direction of the eccentric center. Also, 6.00B is a best fitting position in the geometrical cylinder center base. With respect to the swirl center, the distribution range of centers for 1.75B is different to that for the other positions and the eccentricities of this plane are larger regardless the valve angle. After 1.75B, there is no certain tendency in the center position change according to the valve angle and lift. Additionally, the eccentricities are not sufficiently small to neglecting the effect on ISM measurement.

3D SV-wave Velocity Structure of East Asia using Rayleigh-Wave Tomography (레일리파 토모그래피를 사용한 동아시아의 3차원 SV파 속도구조)

  • You, Seol-Han;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.12-17
    • /
    • 2017
  • We construct 3D SV-wave velocity structure of the crust and the upper mantle beneath East Asia from Rayleighwave group-velocity measurements. For the construction of the SV-wave velocity model at 10 ~ 100 km depth, we used seismic data recorded at 321 broadband stations in Korea, Japan, and China. Rayleigh-wave group-velocity dispersion curves were obtained by using the multiple filtering technique in the period range from 3 to 150 s. High SV-velocity anomalies are imaged beneath the East Sea from 10 km depth to deeper depth, implying that the Moho beneath the East Sea is between at 10 ~ 20 km depth. We estimated the Moho beneath the Korean peninsula to be around 35 km based on the depth where a high-velocity anomaly is observed. The SV-wave velocity model shows prominent fast S-velocity anomalies near northeastern Japan, associated with the subducting Pacific plate. Low-velocity anomalies are found beneath the east coast of the Korean peninsula at 100 km depth, which may play a role in the formation of the Ulleungdo and the Ulleung basin. We observed low-velocity anomalies beneath the Yamato basin at 100 km depth as well, which may indicate the upwelling of fluid from the Pacific plate via dehydration at deeper depth.

Effects of Caffeine on Nerve Conduction Velocity (카페인이 신경전도속도에 미치는 영향)

  • Kang, Yun-Jung
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.195-199
    • /
    • 2020
  • This study examined the effect of the nervous-system-stimulating caffeine on the nerve conduction velocity. The purpose of this study is to investigate the effect of caffeine that stimulates the nervous system on nerve conduction test. Although both measurement intervals did not show statistically significant differences when comparing the pre- and post-NCV values within the control and individual experimental groups, it was found that the nerve conductivity in the Axilla-Above Elbow section increased significantly after caffeine intake for the experimental group. Caffeine intake, which has increased the nerve conduction velocity (NCV), was determined to play roles in improving motor skills, muscle strength and nerve performance by temporarily increasing the nerve conduction velocity. Through this study, we learned that caffeine has an influence on the peripheral nervous system as it helps to improve the nerve conduction velocity. upon an appropriate amount of caffeine intake. We hope that these results will help develop treatment and diagnostic methods for patients with nerve dysfunction and myofunctional disorders.

A Study on The Velocity Distribution in Closed Conduit by Using The Entropy Concept (엔트로피 개념을 이용한 관수로내의 유속분포에 관한 연구)

  • Choo, Tai Ho;Ok, Chi Youl;Kim, Jin Won;Maeng, Seung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.357-363
    • /
    • 2009
  • When yields the mean velocity of the closed conduit which is used generally, it is available to use Darcy Weisbach Friction Loss Head equation. But, it is inconvenient very because Friction Loss coefficient f is the function of Reynolds Number and Relative roughness (${\varepsilon}$/d). So, it is demanded more convenient equation to estimate. In order to prove the reliability and an accuracy of Chiu's velocity equation from the research which sees hereupon, proved agreement very well about measured velocity measurement data by using Laser velocimeter which is a non-insertion velocity measuring equipment from the closed conduit (Laser Doppler Velocimeter: LDV) and an insertion velocity measuring equipment and the Pitot tube which is a supersonic flow meter (Transit-Time Flowmeters). By proving theoretical linear-relation between maximum velocity and mean velocity in laboratory flume without increase and decrease of discharge, the equilibrium state of velocity in the closed conduit which reachs to equilibrium state corresponding to entropy parameter M value has a trend maintaining consistently this state. If entropy M value which is representing one section is determinated, mean velocity can be gotten only by measuring the velocity in the point appearing the maximum velocity. So, it has been proved to estimate simply discharge and it indicates that this method can be a theoretical way, which is the most important in the future, when designing, managing and operating the closed conduit.