DOI QR코드

DOI QR Code

Determination of Tricuspid Regurgitation Velocity/Pulmonary Artery Flow Velocity Time Integral in Dogs with Pulmonary Hypertension

  • Kim, Seungji (College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University) ;
  • Oh, Dayoung (College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University) ;
  • Lee, Siheon (College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University) ;
  • Hong, Sungkyun (College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University) ;
  • Choi, Mincheol (College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University) ;
  • Yoon, Junghee (College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University)
  • Received : 2020.05.27
  • Accepted : 2020.08.11
  • Published : 2020.08.31

Abstract

This retrospective, echocardiographic study using 144 dogs with clear systolic tricuspid regurgitation on Doppler echocardiography was performed to determine the diagnostic value of the systolic tricuspid regurgitation velocity/pulmonary artery flow velocity time integral to predict the Doppler estimates of dogs with tricuspid regurgitation pressure gradient compared with other cardiac indices of pulmonary hypertension, and to investigate a cutoff value to select patients with a potentially poor outcome. The systolic tricuspid regurgitation velocity/pulmonary artery flow velocity time integral increased significantly as the severity of pulmonary hypertension increased and had a correlation coefficient that was analogous to those of other conventional cardiac indices. A cutoff value greater 1.65 provided the best-balanced sensitivity (84%) and specificity (80%) in determining patients with a poor prognosis. In conclusion, the systolic tricuspid regurgitation velocity/pulmonary artery flow velocity time integral is readily obtained using routine echocardiography and could provide a non-invasive, novel, and supplementary index for evaluating dogs with pulmonary hypertension as useful prognostic criteria, particularly in those with advanced pulmonary hypertension.

Keywords

References

  1. Abbas AE, Franey LM, Marwick T, Maeder MT, Kaye DM, Vlahos AP, Serra W, Al-Azizi K, Schiller NB, Lester SJ. Noninvasive assessment of pulmonary vascular resistance by Doppler echocardiography. J Am Soc Echocardiogr 2013; 26: 1170-1177. https://doi.org/10.1016/j.echo.2013.06.003
  2. Abraham WT, Adams KF, Fonarow GC, Costanzo MR, Berkowitz RL, LeJemtel TH, Cheng ML, Wynne J. Inhospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the acute decompensated heart failure National Registry. J Am Coll Cardiol 2005; 46: 57-64. https://doi.org/10.1016/j.jacc.2005.03.051
  3. Ajami GH, Cheriki S, Amoozgar H, Borzouee M, Soltani M. Accuracy of Doppler-derived estimation of pulmonary vascular resistance in congenital heart disease: An index of operability. Pediatr Cardiol 2011; 32: 1168-1174. https://doi.org/10.1007/s00246-011-0035-4
  4. Atkins CE, Snyder PS. Systolic time intervals and their derivatives for evaluation of cardiac function. J Vet Intern Med 1992; 6: 55-63. https://doi.org/10.1111/j.1939-1676.1992.tb03152.x
  5. Bhattacharya PT, Troutman GS, Mao F, Fox AL, Tanna MS, Zamani P, Grandin EW, Menachem JN, Birati EY, Chirinos JA, Mazimba S, Smith KA, Kawut SM, Forfia PR, Vaidya A, Mazurek JA. Right ventricular outflow tract velocity time integral-to-pulmonary artery systolic pressure ratio: a noninvasive metric of pulmonary arterial compliance differs across the spectrum of pulmonary hypertension. Pulm Circ 2019; 9: 1-10.
  6. Blanco P, Aguiar FM, Blaivas M. Rapid ultrasound in shock (RUSH) velocity-time integral: A proposal to expand the RUSH protocol. J Ultrasound Med 2015; 34: 1691-1700. https://doi.org/10.7863/ultra.15.14.08059
  7. Borgarelli M, Abbott J, Braz-Ruivo D, Chiavegato D, Crosara S, Lamb K, Ljungvall I, Poggi M, Santilli RA, Haggstrom J. Prevalence and prognostic importance of pulmonary hypertension in dogs with myxomatous mitral valve disease. J Vet Intern Med 2015; 29: 569-574. https://doi.org/10.1111/jvim.12564
  8. Brecker SJ, Gibbs JS, Fox KM, Yacoub MH, Gibson DG. Comparison of Doppler derived haemodynamic variables and simultaneous high fildelity pressure measurements in severe pulmonary hypertension. Br Heart J 1994; 72: 384-389.
  9. Bronicki RA, Baden HP. Pathophysiology of right ventricular failure in pulmonary hypertension. Pediatr Crit Care Med 2010; 11: S15-22. https://doi.org/10.1097/pcc.0b013e3181c7671c
  10. Currie PJ, Seward JB, Chan KL, Fyfe DA, Hagler DJ, Mair DD, Reeder GS, Nishimura RA, Tajik AJ. Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol 1985; 6: 750-756.
  11. Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, Corretti MC, Hassoun PM. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009; 179: 615-621. https://doi.org/10.1164/rccm.200811-1691OC
  12. Fleiss JL. Design and analysis of clinical experiments. New York: Wiley. 1999: 23-27.
  13. Ghio S, Schirinzi S, Pica, S. Pulmonary arterial compliance: How and why should we measure it? Glob Cardiol Sci Pract. 2015; 4: 58.
  14. Johnson L, Boon J, Orton C. Clinical characteristics of 53 dogs with Doppler-derived evidence of pulmonary hypertension: 1992-1996. J Vet Intern Med 1999; 13: 440-447. https://doi.org/10.1892/0891-6640(1999)013<0440:CCODWD>2.3.CO;2
  15. Kellihan HB, Stepien RL. Pulmonary hypertension in canine degenerative mitral valve disease. J Vet Cardiol 2012; 14: 149-164. https://doi.org/10.1016/j.jvc.2012.01.001
  16. Koestenberger M, Avian A, Grangl G, Burmas A, Kurath-Koller S, Hansmann G. Right ventricular outflow tract velocity (RVOT VTI) and tricuspid regurgitation velocity/RVOT VTI ratio in pediatric pulmonary hypertension. Int J Cardiol 2016; 212: 274-276. https://doi.org/10.1016/j.ijcard.2016.03.111
  17. Koestenberger M, Nage B, Ravekes W, Avian A, Burmas A, Grangl G, Cvirn G, Gamillscheg A. Right ventricular outflow tract velocity time integral determination in 570 healthy children and in 52 pediatric atrial septal defect patients. Pediatr Cardiol 2015; 36: 1129-1134. https://doi.org/10.1007/s00246-015-1131-7
  18. Kouzu H, Nakatani S, Kyotani S, Kanzaki H, Nakanishi N, Kitakaze M. Kouzu, H., Nakatani, S., Kyotani, S. Noninvasive estimation of pulmonary vascular resistance by Doppler echocardiography in patients with pulmonary arterial hypertension. Am J Cardiol 2009; 103: 872-876. https://doi.org/10.1016/j.amjcard.2008.11.039
  19. Pande A, Sarkar A, Ahmed I, Naveen Chandra G, Patil SK, Kundu CK, Arora R, Samanta A. Non-invasive estimation of pulmonary vascular resistance in patients of pulmonary hypertension in congenital heart disease with unobstructed pulmonary flow. Ann Pediatr Cardiol 2014; 7: 92-97. https://doi.org/10.4103/0974-2069.132475
  20. Pipers FS, Andrysco RM, Hamlin RL. A totally non-invasive method for obtaining systolic time intervals in the dog. Am J Vet Res 1978; 39: 1822-1826.
  21. Rhinehart JD, Schober KE, Scansen BA, Yildiz V, Bonagura JD. Effect of body position, exercise, and sedation on estimation of pulmonary artery pressure in dogs with degenerative atrioventricular valve disease. J Vet Intern Med 2017; 31: 1611-1621 https://doi.org/10.1111/jvim.14814
  22. Roule V, Labombarda F, Pellissier A, Sabatier R, Lognone T, Gomes S, Bergot E, Milliez P, Grollier G, Saloux E. Echocardiographic assessment of pulmonary vascular resistance in pulmonary arterial hypertension. Cardiovasc Ultrasound 2010; 8: 21. https://doi.org/10.1186/1476-7120-8-21
  23. Schober KE, Baade H. Doppler echocardiographic prediction of pulmonary hypertension in West Highland White Terriers with chronic pulmonary disease. J Vet Intern Med 2006; 20: 912-920. https://doi.org/10.1892/0891-6640(2006)20[912:DEPOPH]2.0.CO;2
  24. Serres F, Chetboul V, Gouni V, Tissier R, Sampedrano CC, Pouchelon J. Diagnostic value of echo-Doppler and tissue Doppler imaging in dogs with pulmonary arterial hypertension. J Vet Intern Med 2007; 21: 1280-1289. https://doi.org/10.1892/07-064.1
  25. Soydan LC, Kellihan HB, Bates ML, Stepien RL, Consigny DW, Bellofiore A, Francois CJ, Chesler NC. Accuracy of Doppler echocardiographic estimates of pulmonary artery pressure in a canine model of pulmonary hypertension. J Vet Cardiol 2015; 17: 13-24. https://doi.org/10.1016/j.jvc.2014.10.004
  26. Stepien RL. Pulmonary arterial hypertension secondary to chronic left-sided cardiac dysfunction in dogs. J Small Anim Pract 2009; 50S: 34-43.
  27. Tan C, Rubenson D, Srivastava A, Mohan R, Smith MR, Billick K, Bardarian S, Heywood JT. Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler derived cardiac output for predicting outcomes in a select advanced heart failure cohort. Cardiovasc Ultrasound 2017; 15: 18.
  28. Uehara Y. An attempt to estimate the pulmonary artery pressure in dogs by means of pulsed Doppler echocardiography. J Vet Med Sci 1993; 55: 307-312. https://doi.org/10.1292/jvms.55.307
  29. Vezzosi T, Domenech O, Iacona M, Marchesotti F, Zini E, Venco L, Tognetti R. Echocardiographic evaluation of the right atrial area index in dogs with pulmonary hypertension. J Vet Intern Med 2018; 32: 42-47. https://doi.org/10.1111/jvim.15035
  30. Visser LC, Im MK, Johnson LR. Diagnostic value of right pulmonary artery distensibility index in dogs with pulmonary hypertension: comparison with Doppler echocardiographic estimates of pulmonary artery pressure. J Vet Intern Med 2016; 30: 543-552. https://doi.org/10.1111/jvim.13911