Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2020.10.03.195

Effects of Caffeine on Nerve Conduction Velocity  

Kang, Yun-Jung (Division of Clinical Laboratory Science, Sang-ji University)
Publication Information
Journal of Convergence for Information Technology / v.10, no.3, 2020 , pp. 195-199 More about this Journal
Abstract
This study examined the effect of the nervous-system-stimulating caffeine on the nerve conduction velocity. The purpose of this study is to investigate the effect of caffeine that stimulates the nervous system on nerve conduction test. Although both measurement intervals did not show statistically significant differences when comparing the pre- and post-NCV values within the control and individual experimental groups, it was found that the nerve conductivity in the Axilla-Above Elbow section increased significantly after caffeine intake for the experimental group. Caffeine intake, which has increased the nerve conduction velocity (NCV), was determined to play roles in improving motor skills, muscle strength and nerve performance by temporarily increasing the nerve conduction velocity. Through this study, we learned that caffeine has an influence on the peripheral nervous system as it helps to improve the nerve conduction velocity. upon an appropriate amount of caffeine intake. We hope that these results will help develop treatment and diagnostic methods for patients with nerve dysfunction and myofunctional disorders.
Keywords
Peripheral Nervous System; Nerve Conduction Velocity; Caffeine; Coffee; Axilla-Above Elbow;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Essig, D. L. Costill & P. J. Van Handel. (1980). Effects of caffeine ingestion on utilization of muscle glycogen and lipid during leg ergometer cycling. Int. J. Sports Med, 7(1), 86-90.
2 L. L. Sprie. (2000). Caffeine Protentiates low frequency skeletal muscle force in habitual and nonhabitual and caffeine consumers. J Appl Physiol, 89, 1719-1724. DOI : 10.1152/jappl.2000.89.5.1719   DOI
3 M. A. Erickson, R. J. Schwarzkopf & R. D. Mckenzie. (1987). Effects of caffeine, fructose, and glucose ingestion on muscle glycogen utilization during exercise. Med Sci Sports Exerc., 19(6), 579-583.
4 S. K. Powers, R. J. Byrd, R. Tulley & T. Callender. (1983). Effects of caffeine ingestion on metalbolism and perfomance during graded exercise. Eur, J. Appl Physical, 50(3), 301-307. DOI : 10.1007/BF00423236   DOI
5 S. K. Powers, R. J. Byrd, R. Tulley & T. Callender (1983). Effects of caffeine ingestion on metabolism and performance during graded exercise. European Journal of Applied Physiology and Occupational Physiology, 50(3), 301-307. DOI: 10.1007/bf00423236   DOI
6 S. I. L.ee & T. W. Kim. (2008). The effect of acute caffeine ingestion on maximal isometric strength of the squash playes. Korean Journal of Sports Science, 17(4), 1561-1569.
7 J. M. Park, K. S. Hyun & Y. S. Jee. (2017). Effects of Combined Exercise on Body Composition, Isokinetic Moments, and Nerve Conduction in the Obese Adult. Journal of Sport and Leisure Studies, 68, 561-569.   DOI
8 T. E. Graham & L. L. Spriet. (1995). Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J. Applied Physiology, 78(3), 867-874. DOI : 10.1152/jappl.1995.78.3.867   DOI
9 R. A. Raguso, D. M. Light & E. Pickersky. (1996). Electro antennogram responses of Hyles lineata(sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated caffeine. J. chem Ecol, 22(10), 1735-1766. DOI : 10.1007/BF02028502   DOI
10 K. W. Lee. (2006). Neurology. E-Public, KOR, 794-800,
11 D. L. Costill, G. P. Dalsky & W. J. Fink. (1978). Effects of caffeine ingestion on metabolism and exercise performance. Med. Sci. Exer, 10(13), 155-158.
12 B. S. Victor, M. Lubetsky & J. F. Greden. (1981). Somatic manifestations of caffeinism. Journal of Cinical Psychiatry, 42(5), 185-188.
13 M. F. Mcarty. (1995). Optimizing exercise for Fat loss. Medical Hypotheses, 44(5), 325-330.   DOI
14 M. A. Tarnopolsky. (1994). Caffeine and endurance performance. Sports Med, 18(2), .109-125. DOI : 10.2165/00007256-199418020-00004   DOI
15 J. W. Daly, R. F. Bruns & S. H. Snyder. (1981). Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life sciences, 28(19), 2083-2097. DOI: 10.1016/0024-3205(81)90614-7   DOI
16 B. Waldeck. (1973). Sensitization by caffeine of central catecholamine receptors. Journal of Neural Transmissio, 34(1), 61-72. DOI : 10.1007/BF01244827   DOI
17 S. H. Lim, S. B. Park, D. Y. Moon, J. S. Kim, Y. D. Choi & S. K. Park. (2019). Principles of intraoperative neurophysiological monitoring with insertion and removal of electrodes. Korean J Clin Lab Sci, 51(4), 453-461. DOI : 10.15324/kjcls.2019.51.4.453   DOI