Browse > Article
http://dx.doi.org/10.7582/GGE.2017.20.1.012

3D SV-wave Velocity Structure of East Asia using Rayleigh-Wave Tomography  

You, Seol-Han (Division of Geology and Geophysics, Kangwon National University)
Chang, Sung-Joon (Division of Geology and Geophysics, Kangwon National University)
Publication Information
Geophysics and Geophysical Exploration / v.20, no.1, 2017 , pp. 12-17 More about this Journal
Abstract
We construct 3D SV-wave velocity structure of the crust and the upper mantle beneath East Asia from Rayleighwave group-velocity measurements. For the construction of the SV-wave velocity model at 10 ~ 100 km depth, we used seismic data recorded at 321 broadband stations in Korea, Japan, and China. Rayleigh-wave group-velocity dispersion curves were obtained by using the multiple filtering technique in the period range from 3 to 150 s. High SV-velocity anomalies are imaged beneath the East Sea from 10 km depth to deeper depth, implying that the Moho beneath the East Sea is between at 10 ~ 20 km depth. We estimated the Moho beneath the Korean peninsula to be around 35 km based on the depth where a high-velocity anomaly is observed. The SV-wave velocity model shows prominent fast S-velocity anomalies near northeastern Japan, associated with the subducting Pacific plate. Low-velocity anomalies are found beneath the east coast of the Korean peninsula at 100 km depth, which may play a role in the formation of the Ulleungdo and the Ulleung basin. We observed low-velocity anomalies beneath the Yamato basin at 100 km depth as well, which may indicate the upwelling of fluid from the Pacific plate via dehydration at deeper depth.
Keywords
Rayleigh wave; Dispersion curve; Group velocity; Tomography; 3D velocity model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ishise, M., and Oda, H., 2005, Three-dimensional structure of P-wave anisotropy beneath the Tohoku district, northeast Japan, Journal of Geophysical Research, 110, B07304.
2 Kennett, B. L. N., and Engdahl, E. R., 1991, Traveltimes for global earthquake location and phase identification, Geophysical Journal International, 105, 429-465, doi:10.1111/j.1365-246X.1991.tb06724.x   DOI
3 Kim, H. J., Park, C. H., Hong, J. K., Jou, H. T., Chung, T. W., Zhigulev, V., and Anosov, G. I., 1994, A seismic experiment in the Ulleung basin (Tsushima basin), southwestern Japan Sea (East Sea of Korea), Geophysical Research Letters, 21,1975-1978.   DOI
4 Kim, S. K., 1995, A study on the crustal structure of the Korean Peninsula, Journal of the Geological Society of Korea, 31, 393-403. (In Korean with English abstract)
5 Ludwig, W. J., Murauchi, S., and Houtz, R. E., 1975, Sediments and structure of the Japan Sea, Geological Society of America Bulletin, 86, 651-664.   DOI
6 Matsubara, M., Obara, K., and Kasahara, K., 2008, Three-dimensional P and S wave velocity structures beneath the Japan Islands obtained by high-density seismic stations by seismic tomography, Tectonophysics, 454, 86-103.   DOI
7 Nakahigashi, K., Shinohara, M., Yamada, T., Uehira, K., Sakai, S., and Kanazawa, T., 2015, Deep slab dehydration and large-scaleupwelling flow in the upper mantle beneath the Japan Sea, Journal of Geophysical Research, 120, 3278-3292.
8 Nakajima, J., and Hasegawa, A., 2004, Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan, Earth Planetary Science Letters, 225, 365-377.   DOI
9 Nishida, K., Kawakatsu, H., and Obara, K., 2008, Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters, Journal of Geophysical Research, 113, B10302.   DOI
10 Paige, C. C., and Saunders, M. A., 1982a, LSQR: An algorithm for sparse linear equations and sparse least squares, Transactions on Mathematical Software, 8, 43-71, doi:10.1145/355984.355989.   DOI
11 Paige, C. C., and Saunders, M. A., 1982b, LSQR: Sparse linear equations and least squares problems, Transactions on Mathematical Software, 8, 195-209, doi:10.1145/355993.356000.   DOI
12 Shiomi, K., Matsubara, M., Ito, Y., and Obara, K., 2008, Simple relationship between seismic activity along Philippine Sea slab and geometry of oceanic Moho beneath southwest Japan, Geophysical Journal International, 173, 1018-1029.   DOI
13 Simute, S., Steptoe, H., Cobden, L., Gokhberg, A., and Fichtner, A., 2016, Full-waveform inversion of the Japanese Islands region, Journal of Geophysical Research, 121, doi:10.1002/2016JB012802.
14 Tamaki, K., 1988, Geological structure of the Japan Sea and its tectonic implications. Bulletin of the Geological Survey of Japan, 39, 269-365.
15 Tonegawa, T., Hirahara, K., Shibutani, T., Iwamori, H., Kanamori, H., and Shiomi, K., 2008, Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab, Earth and Planetary Science Letters, 274, 346-354.   DOI
16 Wei, W., Zhao, D., Xu, J., Wei, F., and Liu, G., 2015, P and S wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism, Journal of Geophysical Research, 120, 1642-1666.
17 Baumgardner, R. B., and Frederickson, P. O., 1985, Icosahedraldiscretization of the two-sphere, SIAM Journal of Numerical Analysis, 22, 1107-1115, doi:10.1137/0722066.   DOI
18 Yoshizawa, K., Miyake, K., and Yomogida, K., 2010, 3D upper mantle structure beneath Japan and its surrounding region from inter-station measurements of surface waves, Physics Earth Planetary Interiors, 183, 4-19, doi:10.1016/j.pepi.2010.02.012.   DOI
19 Zhao, D., Wang, Z., Umino, N., and Hasegawa, A., 2007, Tomographic imaging outside a seismic network: Application to the northeast Japan arc, Bulletin Seismological Society of America, 97, 1121-1132.   DOI
20 Zheng, Y., Shen, W., Zhou, L., Yang, Y., Xie, Z., and Ritzwoller, M. H., 2011, Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography, Journal of Geophysical Research, 116, B12312, doi:10.1029/2011JB008637.   DOI
21 Chang, S. J., and Baag, C. E., 2007, Moho depth and crustal vp/vs variation in southern Korea from teleseismic receiverfunctions: Implication for tectonic affinity between the Korean Peninsula and China, Bulletin of the Seismological Society ofAmerica, 97, 1621-1631.   DOI
22 Cho, H. M., Baag, C. E., Lee, J. M., Moon, W. M., Jung, H.,Kim, K. Y., and Asudeh, I., 2006, Crustal velocity structure across the southern Korean Peninsula from seismic refractionsurvey, Geophysical Research Letters, 33, L06307, doi:10.1029/2005/GL025145.
23 Chough, S. K., Kwon, S. T., Ree, J. H., and Choi, D. K., 2000,Tectonic and sedimentary evolution of the Korean Peninsula:a review and new view, Earth-Science Reviews, 52, 175-235.   DOI
24 Dziewonski, A., Landisman, M., and Bloch S., 1969, A technique for the analysis of transient seismic signals, Bulletin of the Seismological Society of America, 59, 427-444.
25 Herrmann, R. B., 2013, Computer programs in seismology: An evolving tool for instruction and research, Seismological Research Letters, 84, 1081-1088, doi:10.1785/0220110096.   DOI
26 Huang, J., and Zhao, D., 2009, Seismic imaging of the crust and upper mantle under Beijing and surrounding regions, Physics of the Earth and Planetary Interiors, 173, 330-348.   DOI
27 Igarashi, T., Iidaka, T., Iwasaki, T., Shibutani, T., Ueno, T., and University group of the joint seismic observation at the Niigata-Kobe tectonic zone, 2009, Crust and upper mostmantle structure beneath central Japan inferred from receiver function analysis, Earth Planets Space, 61, 1215-1221.   DOI