• 제목/요약/키워드: vehicle trajectory

검색결과 388건 처리시간 0.025초

Laser Welding Application in Car Body Manufacturing

  • Shin, H.O.;Chang, I.S.;Jung, C.H.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.2-7
    • /
    • 2003
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows; optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4㎾ Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. This application was successfully launched mass production line in 2001. The laser-welded line of side panel consists of 122 stitches totally. And the length is about 2.4m.

  • PDF

무인항공기 기반 지연 허용 네트워크에서의 라우팅 (Routing in UAV based Disruption Tolerant Networks)

  • 김태호;임유진;박준상
    • 정보처리학회논문지C
    • /
    • 제16C권4호
    • /
    • pp.521-526
    • /
    • 2009
  • DTN(Disruption/Delay Tolerant Network)은 네트워크의 단절성(partitioning)이 높은 환경에서 단절된 지역 네트워크를 연동하기 위한 네트워크 구조이다. 현재 DTN과 관련하여 많은 연구가 이루어지고 있으며 특히 라우팅 기법에 대한 연구는 가장 많은 관심을 받는 분야 중 하나이다. 본 논문에서는 단절된 애드혹(Ad-hoc) 네트워크에서 사용자간의 연결성을 제공하기 위하여 무인항공기(Unmanned Aerial Vehicle: UAV)를 이용한 DTN의 구성 시 사용가능한 DTN 라우팅 기법을 살펴보고 UAV의 이동 경로 제어 기법을 제안한다. 또한 다양한 시나리오에서의 실험을 통하여 제안된 방법의 성능을 평가한다.

자기구성 퍼지제어기를 이용한 이동로봇의 구동제어 (A Self-Organizing Fuzzy Control Approach to the Driving Control of a Mobile Robot)

  • 배강열
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.46-55
    • /
    • 2006
  • A robust motion controller based on self-organizing fuzzy control(SOFC) and feed-back tracking control technique is proposed for a two-wheel driven mobile robot. The feed-back control technique of the controller guarantees the robot follows a desired trajectory. The SOFC technique of the controller deals with unmodelled dynamics of the vehicle and uncertainties. The computer simulations are carried out to verify the tracking ability of the proposed controller with various driving situations. The results of the simulations reveal the effectiveness and stability of the proposed controller to compensate the unmodelled dynamics and uncertainties.

브러시리스 DC 모터의 적응퍼지 슬라이딩 모드 제어 (Adaptive Fuzzy Sliding Mode Control of Brushless DC Motor)

  • 이종호;김성태;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.647-649
    • /
    • 2000
  • Brushless DC motors are widely used in many industrial fields as an actuator of robot and driving power motors of electrical vehicle. In this paper adaptive fuzzy sliding mode scheme is developed for velocity control of brushless DC motor. The proposed scheme does not require an accurate dynamic model. yet it guarantees asymptotic trajectory tracking despite torque variations. Numerical simulation and DSP-based experimental works for velocity control of brushless DC motor are carried out.

  • PDF

Optimal Guidance Law Using Exact Linearization (ICCAS 2005)

  • Ogawa, Takahiro;Uchiyama, Kenji;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1228-1233
    • /
    • 2005
  • In this paper, we present a new guidance law for a reusable launch vehicle (RLV) that lands vertically after reentry. In our past studies, a guidance law was developed for a vertical/soft landing to a target point. The guidance law, which is analytically obtained, can regenerate a trajectory against disturbances because it is expressed in the form of state feedback. However, the guidance law does not necessarily guarantee a vertical/soft landing when a dynamical system such as an RLV includes a nonlinear phenomenon owing to the atmosphere of the earth. In this study, we introduce a design of the guidance law for a nonlinear system to achieve a vertical/soft landing on the ground using the exact linearization method and solving the two-point boundary-value problem for the derived linear system. Numerical simulation confirmed the validity of the proposed guidance law for an RLV in an atmospheric environment.

  • PDF

Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

  • Metni, Najib;Hamel, Tarek
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.51-60
    • /
    • 2007
  • This paper describes a visual tracking control law of an Unmanned Aerial Vehicle(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation from an initial position to a final position to define a desired trajectory in an unknown 3D environment. The proposed method uses the homography matrix computed from the visual information and derives, using backstepping techniques, an adaptive nonlinear tracking control law allowing the effective tracking and depth estimation. The depth represents the desired distance separating the camera from the target.

파티클 필터의 GPS/INS 초강결합 성능분석 (Particle Filter Performance for Ultra-tightly GPS/INS integration)

  • 박진우;양철관;심덕선
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.785-791
    • /
    • 2008
  • Ultra-tightly coupled GPS/INS integration has been reported to show better navigation performance than that of other integration methods such as loosely coupled and tightly coupled integration. This paper uses the particle filter for ultra-tightly coupled GPS/INS integration and analyzes the navigation performance according to vehicle trajectory and the number of particles. The navigation performance of particle filter is compared with those of EKF and UKF.

Description of Range Control System in Space Center

  • Yun, Sek-Young;Choi,Yong-Tae;Lee, Hyo-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.53.2-53
    • /
    • 2002
  • NARO Space Center is being developed as a national project for the Korea Space Development Program. Among the major missions of the Space Center, the Range Control System is the focal point for all command and control operation of the Space Center. The acquired data from the Tracking Stations and the on-site facilities is processed and distributed in the Control Center. Data processing or data fusion is needed for the exact tracking of the Launch Vehicle from several tracking systems. The first phase, which is the best telemetry source is selected among data streams that are received from each telemetry stations using some pre-defined criterion. Trajectory data and major telemetry parameters...

  • PDF

Advanced controller design for AUV based on adaptive dynamic programming

  • Chen, Tim;Khurram, Safiullahand;Zoungrana, Joelli;Pandey, Lallit;Chen, J.C.Y.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.233-260
    • /
    • 2020
  • The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.

무인기를 위한 최적 경로점 유도 (Optimal Waypoint Guidance for Unmanned Aerial Vehicles (UAVs))

  • 유창경;신효상;탁민제
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.240-245
    • /
    • 2005
  • In this paper, planar waypoint guidance synthesis for UAVs using the LQ optimal impact-angle-control guidance law is proposed. We prove that the energy-optimal control problem with the constraint of passing through the waypoints is equivalent to the problem of finding the optimal pass angles on each waypoint of the optimal impact-angle-control law. The optimal pass angles can be obtained as a numerical solution of the simple pass angle optimization problem that requires neither input parameterization nor constraints. The trajectory obtained by applying the optimal impact-angle-control law with these optimal pass angles becomes energy optimal.