Browse > Article
http://dx.doi.org/10.12989/acd.2020.5.3.233

Advanced controller design for AUV based on adaptive dynamic programming  

Chen, Tim (AI Lab, Faculty of Information Technology, Ton Duc Thang University)
Khurram, Safiullahand (Department of Computer Science, Kunduz University)
Zoungrana, Joelli (School of Intelligent Science, Colinas University of Boe)
Pandey, Lallit (Department of Soil Science, Patuakhali Science and Technology University)
Chen, J.C.Y. (Department of Soil Science, Patuakhali Science and Technology University)
Publication Information
Advances in Computational Design / v.5, no.3, 2020 , pp. 233-260 More about this Journal
Abstract
The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.
Keywords
complex systems; fuzzy models; delay-dependent robust stability criterion; parallel distributed compensation;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Wei, Q., Liu, D., Shi, G. and Liu, Y. (2015), "Multibattery Optimal multi-battery coordination control for home energy management systems via distributed iterative adaptive dynamic programming", IEEE Trans. Ind. Electron., 42(7), 4203-4214. https://doi.org/10.1109/TIE.2014.2388198.
2 Wei, Q., Song, R. and Yan, P. (2016), "Data-driven zero-sum neurooptimal control for a class of continuous-time unknown nonlinear systems with disturbance using ADP", IEEE Trans. Neural Netw. Learn. Syst., 27(2), 444-458. https://doi.org/10.1109/TNNLS.2015.2464080.   DOI
3 Xiang, X., Lapierre, L. and Jouvencel, B. (2015), "Smooth transition of AUV motion control: From fully-actuated to under actuated configuration", Robot. Auton. Syst., 67, 14-22. https://doi.org/10.1016/j.robot.2014.09.024.   DOI
4 Yao, H. and Yang, G. (2016), "Efficient Multivariable Generalized Predictive Control for Autonomous Underwater Vehicle in Vertical Plane", Math. Probl. Eng., 2016, 1-9. https://doi.org/10.1155/2016/4650380.
5 Yuh, J. (1990), "Modeling and control of underwater robotic vehicles", IEEE Trans. Syst. Man. Cybern., Syst., 20(6), 1475-1483. https://doi.org/10.1109/21.61218.   DOI
6 Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. http://dx.doi.org/10.12989/scs.2018.28.4.439
7 Zhang, H., Wei, Q. and Liu, D. (2011), "An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games", Automatica, 47(1), 207-214. https://doi.org/10.1016/j.automatica.2010.10.033.   DOI
8 Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201   DOI
9 Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363   DOI
10 Khodayari, M. H. and Balochian, S. (2015), "Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller", J. Marine Sci. Technol., 20(3), 559-578. https://doi.org/10.1007/s00773-015-0312-7.   DOI
11 Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249   DOI
12 Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K. G., Lewis, F. L. and Dixon, W. E. (2013), "A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems", Automatica, 49(1), 82-92. https://doi.org/10.1016/j.automatica.2012.09.019.   DOI
13 Chen, C.W. (2014a), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlinear Dynam., 76(1), 13-22.   DOI
14 Chen, C.W. (2014b), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlinear Dynam., 76(1), 23-31.   DOI
15 Chen, T., Khurram, S. and Cheng, C. (2019), "A relaxed structural mechanics and fuzzy control for fluid-structure dynamic analysis", Eng. Comput., 36(7), 2200-2219.
16 Chen, T., Khurram, S. and Cheng, C. (2019), "Prediction and control of buildings with sensor actuators of fuzzy EB algorithm", Earthq. Struct., 17(3), 307-315. https://doi.org/10.12989/eas.2019.17.3.307.   DOI
17 Chen, T. (2020), "LMI based criterion for reinforced concrete frame structures", Adv. Concr. Constr., 9(4), 407-412.   DOI
18 Chen, T. (2020), "Evolved fuzzy NN control for discrete-time nonlinear systems", J. Circuits Syst. Comput., 29(1), 2050015.   DOI
19 Chen, T. (2020), "On the algorithmic stability of optimal control with derivative operators", Circuits Syst. Signal Process., doi:10.1007/s00034-020- 01447-1.
20 Chen, T. (2020), "An intelligent algorithm optimum for building design of fuzzy structures", Iran J. Sci. Technol, Trans Civ. Eng., 44, 523-531.   DOI
21 Lin, Q., Wei, Q. and Liu, D. (2017), "A novel optimal tracking control scheme for a class of discrete-time nonlinear systems using generalised policy iterative adaptive dynamic programming algorithm", Int. J. Syst. Sci., 48(3), 525-534. https://doi.org/10.1080/00207721.2016.1188177.   DOI
22 Liu, D. and Wei, Q. (2014), "Data-driven neuro-optimal temperature control of water gas shift reaction using stable iterative adaptive dynamic programming", IEEE Trans. Ind. Electron., 61(11), 6399-6408. https://doi.org/10.1109/TIE.2014.2301770.   DOI
23 Liu, D.,Wang, D.,Zhao, D.,Wei, Q. and Jin, N. (2012), "Neuralnetwork-based optimal control for a class of unknown discretetime nonlinear systems using globalized dual heuristic programming", IEEE Trans. Autom. Sci. Eng., 9(3), 628- 634. https://doi.org/10.1109/TASE.2012.2198057.   DOI
24 Liu, G., Chen, G., Jiao, J. and Jiang, R. (2015), "Dynamics Modeling and Control Simulation of an Autonomous Underwater Vehicle", J. Coastal Res., 741-746. https://doi.org/10.2112/SI73-127.1.
25 Mansour, K., Wu, H. and Hwang, C. (2017), "Nonlinear trajectorytracking control of an autonomous underwater vehicle", Ocean Eng., 145, 188-198. https://doi.org/10.1016/j.oceaneng.2017.08.025.   DOI
26 Santhakumar, M., Asokan, T. (2013), "Power efficient dynamic station keeping control of a flat-fish type autonomous underwater vehicle through design modifications of thruster configuration", Ocean Eng., 58, 11-21. https://doi.org/10.1016/j.oceaneng.2012.09.017.   DOI
27 Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547   DOI
28 Shi, D., Mao, Z. (2017), "Multi-step control set-based nonlinear model predictive control with persistent disturbances", Asian J. Control, 21(3), 1-11. https://doi.org/10.1002/asjc.1786.
29 Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161   DOI
30 Trinh, H. and Aldeen, M. (1995), "A comment on decentralized stabilization of large scale interconnected systems with delays", IEEE Trans., AC-40, 914-916
31 Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385   DOI
32 Wei, Q., Liu, D. and Yang, X. (2015), "Infinite horizon self-learning optimal control of nonaffine discrete-time nonlinear systems", IEEE Trans. Neural Netw. Learn. Syst., 26(4), 866-879. https://doi.org/10.1109/TNNLS.2015.2401334.   DOI