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1. INTRODUCTION 
 

One approach to returning a RLV from an orbit to a surface 
on the earth is to perform a vertical/soft landing. Such a vehicle 
is also required to perform an inversion maneuver from a 
nose-first attitude to a tail-first one and a vertical/soft landing 
to a target point. Furthermore, it is preferable that a trajectory is 
generated according to various situations, that is, the guidance 
and control system must have the robustness against unknown 
disturbances to accomplish the mission of the landing on the 
ground. Several guidance laws [1]-[3] have been analytically 
obtained in the form of state feedback to deal with disturbances. 
Table 1 shows the characteristics of each guidance law for 
landers. 

The NASA Marshall Space Flight Center has studied the 
possibility and potential problems associated with the guidance 
and control system for RLVs [1]. They previously proposed a 
guidance law based on E-Guidance of the NASA Apollo lunar 
landers for a linear system that does not properly consider its 
nonlinearity due to the atmosphere. This guidance law called 
the modified E-Guidance is effective in dealing with the 
potentially large dispersion from a predefined trajectory 
because the state quantities of an RLV are successively used 
for the calculation of control input. The guidance law does not 
consider optimality. 

D’Souza of the C.S.Draper Laboratory has designed a 
guidance law for a linear system equivalent to the motion of the 
lunar lander [2]. It was obtained by analytically solving the 
two-point boundary-value problem at the performance index 
described by thrust acceleration. It provides an optimal thrust 
profile for fuel consumption to minimize thrust acceleration. 
The trajectory generated by the guidance law is calculated in 
real time corresponding to a situation. However, it does not 
guarantee a vertical landing for the linear system because it 
cannot constraint the attitude angle of an RLV at the target 
point. 

 
 
 
 
 
 
 
 
 
 
 

 
In response to this problem, a guidance law that guarantees 

a vertical/soft landing for a linear system was proposed from 
the standpoint of minimizing the effect of impact on space 
vehicles and fuel consumption as much as possible [3]. The 
optimal guidance law is derived by applying the variation 
method to a linear system when thrust jerk is treated as control 
input.  

However, a vertical/soft landing cannot be achieved in an 
atmospheric environment because of the nonconsideration of 
nonlinearity due to the atmosphere in the vehicle’s dynamics. 

Then, we analytically design a guidance law for a nonlinear 
system to overcome this problem by using the method proposed 
in [4]. Firstly, the linear equation equivalent to the nonlinear 
motion of an RLV is formulated by the exact linearization. This 
is a method that linearizes the nonlinear system via state 
feedback and coordinate transformation without any 
approximation. Therefore, the derived linear system does not 
depend on an equilibrium point, and is equivalent to a global 
nonlinear system. Then, the guidance law that guarantees a 
vertical/soft landing for a nonlinear system is obtained in a 
closed-form analytical solution by applying the variation 
method to the derived linear system.  

Numerical simulation is performed to confirm validity of 
the proposed guidance law to perform a vertical/soft landing to 
the target point in an atmospheric environment. Furthermore, 
the robustness of the proposed guidance law is also examined 
in the simulation. 

 
2.DYNAMICS OF RLV 

 
In this paper, we design a guidance law for an RLV in the 

final decent phase. Figure 1 shows the descent motion of an 
RLV. The motion of an RLV is assumed to be expressed by the 
equation of its center of gravity. The rotation of the earth is not  
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Vertical 
Landing 

Soft 
Landing 

Optimality Nonlinear 
Compensation 

Modified E-Guidance  [1] ○ ○ × × 
D’Souza        [2] × ○ ○ × 

Previous our study   [3] ○ ○ ○ × 
Present our study      ○ ○ ○ ○ 

Table 1 Evaluations of guidance laws (○ with consideration × without consideration) 
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considered in its dynamics. The coordinate o-xz is regarded as 
the inertial coordinate system. Its origin is fixed on the ground 
and is defined to coincide with the terminal point. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The equation of motion of an RLV is obtained as 
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where u and w denote the x and z-components of velocity V, 
respectively, D the drag, L the lift, T the trust, g the 
gravitational acceleration, γ the flight path, θ the attitude angle, 
and m the mass of an RLV. 

Thrust acceleration which is the control input of the present 
controlled system is defined as 
 

( ) θcos/ mTaTx =  ,   (2a) 
 ( ) θsin/ mTaTz =  .  (2b) 

 
where aTx and aTz are thrust acceleration along x and z 
directions, respectively. In Fig.2, the flight path γ, the angle of 
attackα , and the attitude angle θ are defined as 

 

22
cos

wu
uγ
+

=  , 
22

sin
wu

wγ
+

= ,       (3) 









= −

Tx

Tz

a
aθ 1tan  ,                  (4) 

γθα −=    .                  (5) 
 

From Eq.(4), the attitude of an RLV becomes vertical, that is, θ 
= 90 [deg] when the thrust acceleration aTx is 0[m/s2]. Lift and 
drag are respectively defined as 
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where, ρ is the air density, CL and CD the lift and drag 
coefficients, and S the reference area.  

Using these definitions, the equation of motion of an RLV is 
rewritten as  
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3.EXACT LINEARIZATION 

 
  In the final decent phase, there is a possibility that the 
position of an RLV is largely deviated from the predefined 
trajectory due to the guidance error. It is desirable to be capable 
of recalculating of the trajectory according to the state of an 
RLV. To design the guidance law that satisfies this requirement, 
an analytical solution is required for the nonlinear system 
expressed by Eq.(8). However, it is difficult to derive the 
analytical solution directly from the nonlinear equation of an 
RLV. 

In response to this problem, we attempt to derive a linear 
system that is equivalent to the nonlinear motion described by 
Eq.(8). The linearization using the Taylor series is a 
conventional method of deriving the linear system around an 
equilibrium point. However, this linearization method is not 
suitable for the motion of an RLV because it is difficult to 
specify the equilibrium state of the system.  

Thus, the exact linearization method that linearizes the 
nonlinear system via coordinate transformation and the 
linearization feedback without any approximation is adopted to 
express the motion of an RLV as a linear system. 

The motion is rewritten as the following affine system. 
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The first term on the right side of Eq.(9) denotes a nonlinear 
function with respect to state quantities. The second term is a 
linear one with respect to control input. From Eq.(4), it is 
required that aTx is 0[m/s2] at the terminal time to enable a 
vertical landing. The derivatives of thrust acceleration with 
respect to time called the trust jerk jT are considered as control 
input in Eq.(9) to satisfy the requirement at the terminal time. 

In the exact linearization, coordinate transformation is 
defined as  
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where ξ is new state variable vector obtained after coordinate 
transformation. The operator Lfφ denotes the Lie derivative 
with respect to the function φ(x). The nonlinear mapping φ is 
defined as 
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The transformed state equation is expressed as the following 
equation with the nonlinear mapping. 
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The linearized system becomes the following linear system 
called the Brunovsky canonical form. 
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It is obvious from Eqs.(12) and (13) that the nonlinear mapping 
φ must satisfy  
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Therefore, we defined φ that satisfies Eq.(14) as  
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Eq.(14) is also obtained from the Frobenius theorem [5]. 

The transformed state variables are defined from Eqs.(10) 
and (15) as 
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From Eq.(15), the transformed state equation Eq.(12) is 
rewritten as 
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The nonlinearity term in the equation of ξ3 is not removed as 
shown in Eq.(17) by only coordinate transformation. 
Consequently, the control input u is defined as the following 
equation to linearize Eq.(17) by defining a new control input v 
and the state feedback. 
 

{ } { } vφφu fffff
12312 −−

+−= LLLLL        (18) 

{ }


















∂
∂

∂
∂

−

∂
∂

−
∂
∂

∂
∂

∂
∂

−
∂
∂

∂
∂

=
−

TxTx

TzTz

TxTzTzTx

fg

a
u

a
w

a
u

a
w

a
w

a
u

a
w

a
uLL

&&

&&

&&&&
112 φ  

where 

1
2

22 +







∂
∂

+
∂
∂

+−=
∂
∂ w

a
C

u
a
C

wu
m
Sρ

a
u

Tx

L

Tx

D

Tx

&  , 

1
2

22 +







∂
∂

+
∂
∂

−+=
∂
∂ u

a
Cw

a
Cwu

m
S

a
w

Tz

L

Tz

D

Tz

ρ&    , 









∂
∂

+
∂
∂

+−=
∂
∂ w

a
Cu

a
Cwu

m
S

a
u

Tz

L

Tz

D

Tz

22

2
ρ&      , 









∂
∂

+
∂
∂

−+=
∂
∂ u

a
Cw

a
Cwu

m
S

a
w

Tx

L

Tx

D

Tx

22

2
ρ&      . 

 
The first term of the equation with respect to ξ3 in Eq.(17) is 
calculated as 
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It is assumed that the air density ρ and the gravity acceleration 
g are functions of z, and the lift and drag coefficients, CL and 
CD, are functions of u, w, aTx, aTz, and z. 

The term, {LgLf
2φ}-1, must be nonsingular because the 

control input v defined in Eq.(18) cannot calculate if the term 
expresses a singular matrix. It is assumed that the following 
equation which is expressed as the requirement that the 
determination of {LgLf

2φ}-1 is not equal to zero, is always 
satisfied in the final decent phase.  
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Eq.(17) can be expressed as the following linear system. 
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Eq.(20) is equivalent to the nonlinear system described in 
Eq.(9). From Eqs.(9), (16), and (20), the control input v in the 
derived system is represented as  
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The control input v is treated as the jerk of an RLV.  
 

4.GUIDANCE LAW 
 
 In this section, we design the guidance law by analytically 
solving the two-point boundary-value problem for the derived 
linear system.  

Performance index is defined as 
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where Γ denotes the weighting coefficient on the terminal time. 
The coefficient Γ enables the control input to adjust fuel 
consumption indirectly. The performance index represents a 

trade-off between the minimum time problem and the 
minimum jerk one. The jerk which can be specified as the 
effect of the destructive power on payloads in an RLV should 
be limited within a certain range. Therefore, a minimum jerk is 
desirable for an RLV to accomplish its mission.  

To achieve a vertical/soft landing to the target point, the 
terminal state is constrained as  
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The guidance law is obtained by analytically solving the 
two-point boundary-value problem.  
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Here, tgo is regarded as the time to go, which is the time 
between the current time and the terminal time. Time to go is 
calculated to solve  
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Control input, which depends only on the current state, 

terminal state, and time to go is derived in a closed form. This 
guidance law is attractive in terms of computational speed 
because it generates the trajectory using the current state 
without any iterative computations. 

The proposed guidance law guarantees a vertical/soft landing 
to the target point in an environment with an atmosphere 
because the nonlinearity due to the lift and drag is taken into 
account for the guidance system. Figure 3 shows the 
block diagram of the guidance system for an RLV. This 
guidance system has the robustness against uncertainties due to 
the atmosphere.  

 
5.NUMERICAL SIMULATION 

 
  The numerical simulation is performed to confirm the 
validity of the proposed guidance law to achieve a vertical/soft 
landing to the target point under arbitrary initial conditions.  

The initial and terminal conditions are 
 

( ) [ ]Tt 510301245000100000 −−=x     (26) 

( ) [ ]Tft 2000000=x          (27) 

 
The other parameters are as follows: an initial mass m0 of 
71.6×103 kg, a reference area S of 150 m2, and a weighting 
coefficient Γ of 0.1. The lift and drag coefficients, CL and CD, 
obtained by CFD2000 (Adaptive Research Corporation) are 
used in the dynamics of an RLV, that is, Eq.(9). To confirm the 
robustness against the error of coefficient, the simulation is 
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 Fig.3 The block diagram of the proposed guidance system 

x(t)
Nonlinear 
Dynamics

Eq.(9)

Nonlinear 
Dynamics

Eq.(9)
Nonlinear 
Mapping
Eq.(15)

Nonlinear 
Mapping
Eq.(15)

Time to go
Eq.(25)

Guidance 
Law

Eq.(24)

Guidance 
Law

Eq.(24)

{ } 312
fff LφLL −

− { } 312
fff LφLL −

−

{ } 12 −φLL ff{ } 12 −φLL ff

Air DataAir Data

Air Data Current State

Linearization feedbackLinearization feedback

tgo

ξ(t)
v jT

Guidance  SystemGuidance  System

Thrust Jerk

performed under following two conditions of the guidance 
system. 
 
Case 1: The lift and drag coefficients CL and CD in the 
linearization feedback Eq.(18) accurately correspond to them in 
the dynamics Eq.(9). 
Case 2: CL and CD in Eq.(18) have a 50% error to them in 
Eq.(9).  
 

The solid and dotted lines denote the simulation results in 
“without error” and “with error” cases, respectively. The 
derivatives of CL, CD, ρ, and g shown in Eq.(18) are required to 
linearize the nonlinear system Eq.(9). In the simulation, the 
derivatives of CL and CD in Eq.(18) with respect to aTx and aTz 
are assumed to be sufficiently small in this simulation.  

Figure 4 shows the trajectory of an RLV in the final decent 
phase. In this figure, the solid and dotted lines indicate that an 
RLV reached the target point (x=0m, z=0m) at the terminal 
time using the proposed guidance law even if uncertainties due 
to the air data exists in the guidance system.  
 Figures 5 and 6 illustrate the time histories of the directional 

velocities u and w. The results show that both of the velocities 
u and w at the terminal time are 0m/s. This means that a soft 
landing to the target point is achieved. 

Figures 7 and 8 show the time histories of thrust acceleration 
aTx and aTz. Each value at the terminal time agree with the 
terminal condition in Eq.(27). It is clear that a vertical landing 
is achieved since the thrust acceleration aTz is zero at the 
terminal time. This can be also shown in Figure 9 which 
represents the time history of the attitude angle θ. It can be 
observed from Figure 9 that the inversion maneuver from the 
nose-first attitude to the tail-first one is performed under the 
proposed guidance law. Figure 10 shows the time history of the 
mass. The fuel consumptions are about 10[ton] in each case.  

These results indicate the proposed guidance law is useful in 
achieving a vertical/soft landing to the target point in an 
atmospheric environment. Furthermore, the results show that 
the proposed guidance law also has robustness against 
uncertainties. 

The linear system Eq.(20) derived by using the exact 
linearization may not be exactly equivalent to the nonlinear one 
Eq.(9) due to uncertainties and the assumption that their 
derivatives in Eq.(18) can be neglected. However, if the air data  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in Eq.(18) is not estimated accurately, this guidance law dose 
not guarantee the realization of a vertical/soft landing in any 
situations. 

 
6.CONCLUSION 

 
  A new guidance law for an RLV in the final descent phase 
was presented. The linear system equivalent to the nonlinear 
one expressed as the motion of an RLV was formulated by the 
exact linearization method. The guidance law was obtained to 
analytically solve the two-point boundary-value problem for 
the derived linear system. The proposed guidance law has the 
robustness against uncertainties due to the atmosphere because 
it regenerates the trajectory on-line in response to it. Numerical 
simulation confirmed that the proposed guidance law has the 
ability to realize a vertical/soft landing to the target point in an 
atmospheric environment and robustness against uncertainties. 
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-4

0

4

8

12

16

0 20 40 60 80 100 120
 

Time [s]                 
Fig.7 Time history of thrust acceleration aTx
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Time [s]                
Fig.9 Time history of attitude angle θ     
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         Fig.6 Time history of velocity w 
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Time [s]           
Fig.8 Time history of thrust acceleration aTz 
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                  Fig.10 Time history of mass m 
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