Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

  • Published : 2007.02.28

Abstract

This paper describes a visual tracking control law of an Unmanned Aerial Vehicle(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation from an initial position to a final position to define a desired trajectory in an unknown 3D environment. The proposed method uses the homography matrix computed from the visual information and derives, using backstepping techniques, an adaptive nonlinear tracking control law allowing the effective tracking and depth estimation. The depth represents the desired distance separating the camera from the target.

Keywords

References

  1. T. Hamel and R. Mahony, 'Visual servoing of under-actuated dynamic rigid body system: An image based approach,' IEEE Trans. on Robotics and Automation, vol. 18, no. 2, pp. 187-198, 2002 https://doi.org/10.1109/TRA.2002.999647
  2. F. Shell and E. Dickmanns, 'Autonomous landing of airplanes by dynamic machine vision,' Machine Vision and Applications, vol. 7, pp. 127-134, 1994 https://doi.org/10.1007/BF01211658
  3. C. Conticelli, B. Allotta, and P. Khosla, 'Imagebased visual servoing of nonholonomic mobile robots,' Proc. of Conference on Decision and Control, Phoenix, Arizona, USA, vol. 4, pp. 3496-3501, 1999
  4. Y. Ma, J. Koseck'a, and S. Sastry, 'Vision guided navigation for a nonholonomic mobile robot,' IEEE Trans. on Robotics and Automation, vol. 15, no. 3, pp. 521-536, 1999 https://doi.org/10.1109/70.768184
  5. R. Pissard-Gibollet and P. Rives, 'Applying visual servoing techniques to control of a mobile handeye system,' Proc. of IEEE International Conference of Robotics and Automation, Nagasaki, Japan, pp. 166-171, 1995
  6. O. Amidi, T. Kanade, and R. Miller, 'Visionbased autonomous helicopter research at carnegie mellon robotics institute (1991-1998),' Robust Vision for Vision-Based Control of Motion, M. Vincze and G. Hager, Eds., IEEE press and SPIE Optical Engineering press, New York, USA, ch. 15, pp. 221-232, 1999
  7. M. Dahlen, E. Frazzoli, and E. Feron, 'Trajectory tracking control design for autonomous helicopters using a backstepping algorithm,' Proc. of American Control Conference ACC, Chicago, Illinois, USA, pp. 4102-4107, 2000
  8. O. Shakernia, Y. Ma, T. Koo, and S. Sastry, 'Landing an unmanned air vehicle: Vision based motion estimation and nonlinear control,' Asian Journal of Control, vol. 1, no. 3, pp. 128-146, 1999 https://doi.org/10.1111/j.1934-6093.1999.tb00014.x
  9. S. Saripalli, J. Montgomery, and G. Sakhatme, 'Vision based autonomous landing of an unmanned aerial vehicle,' Proc. of International Conference of Robotics and Automation, Washington DC, Virginia, USA, vol. 3, pp. 2799-2804, 2002
  10. E. Altug, J. Ostrowski, and R. Mahony, 'Control of quadrotor helicopter using visual feedback,' Proc. of IEEE International Conference on Robotics and Automation, Washington DC, Virginia, USA, pp. 72-77, 2002
  11. S. Hutchinson, D. Hager, and P. Cake, 'A tutorial on visual servo control,' IEEE Trans. on Robotics and Automation, vol. 12, no. 5, pp. 651-670, October 1996 https://doi.org/10.1109/70.538972
  12. S. Soatto and P. Perona, 'Structure-independent visual motion control on the essential manifold,' Proc. of IFAC Symposium on Robot Control, Capri, Italy, pp. 869-876, 1994
  13. Y. Ma, J. Koseck'a, and S. Sastry, 'Linear differential algorithm for motion recovery: A geometric approach,' International Journal of Computer Vision, vol. 36, no. 1, pp. 71-89, 2002 https://doi.org/10.1023/A:1008124507881
  14. T. Fitzgibbons and E. Nebot, 'Application of vision in simultaneous localization and mapping,' Intelligent Autonomous Systems, vol. 36, no. 1, pp. 71-89, 2000
  15. E. Zergeloglu, D. Dawson, M. de Queiroz, and S. Nagarkatti, 'Robust visual-servo control of robot manipulators in the presence of uncertainty,' Proc. of the 38th Conference on Decision and Control, Phoenix, Arizona, USA, pp. 4137-4142, 1999
  16. H. Zhang and J. Ostrowski, 'Visual servoing with dynamics: Control of an unmanned blimp,' Proc. of IEEE Int. Conf. Robotics & Automation, Detroit, Michigan, pp. 618-623, 1999
  17. E. Malis and F. Chaumette, 'Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods,' IEEE Trans. on Robotics and Automation, vol. 18, no. 2, pp. 176-186, April 2002 https://doi.org/10.1109/TRA.2002.999646
  18. E. Malis, F. Chaumette, and S. Bodet, '$2{\frac{1}{2}}d$ visual servoing,' IEEE Trans. on Robotics and Automation, vol. 15, no. 2, pp. 238-250, April 1999 https://doi.org/10.1109/70.760345
  19. P. Corke and S. Hutchinson, 'A new hybrid imagebased visual servo control scheme,' Proc. of IEEE Conference on Decision and Control, pp. 2521-2527, 2000
  20. K. Deguchi, 'Optimal motion control for imagebased visual servoing by decoupling translation and rotation,' Proc. of the Intl. Conf. on Intelligent Robots and Systems, October, pp. 705-711, 1998
  21. Y. Fang, A. Bahel, W. Dixon, and D. Dawson, 'Adaptive 2.5d visual servoing of kinematically redundant robot manipulators,' Proc. of Conference on Decision and Control, Las Vegas, NV, USA, pp. 2860-2865, 2002
  22. J. Chen, W. Dixon, D. Dawson, and M. McIntire, 'Homography-based visual servo tracking control of a wheeled mobile robot,' IEEE Trans. on Robotics, vol. 22, no. 2, pp. 406-415, April 2006 https://doi.org/10.1109/TRO.2006.862476
  23. N. Metni, T. Hamel, and F. Derkx, 'A UAV for bridges inspection: Visual servoing control law with orientation limits,' Proc. of the 5th Symposium on Intelligent Autonomous Vehicles, Lisboa, Portugal, July 2004
  24. N. Metni, T. Hamel, and F. Derkx, 'A UAV for bridges inspection: Visual servoing control law with orientation limits,' Proc. of the 5th Symposium on Intelligent Autonomous Vehicles, Lisboa, Portugal, July 2004
  25. R. Mahony and T. Hamel, 'Visual servoing using linear features for under-actuated rigid body dynamics,' Proc. of IEEE/RJS International Conference on Intelligent Robots and Systems, pp. 1153-1158, 2001
  26. Z. Zhang and A. Hanson, 'Scaled euclidean 3d reconstruction based on externally uncalibrated cameras,' Proc. of IEEE Symposium on Computer Vision, Coral Glabes, Floride, USA, pp. 37-42, 1995
  27. J. Weng, T. Huang, and N. Ahuja, 'Motion and structure from line correspon-dences: Closedform solution, uniqueness, and optimization,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 14, no. 3, pp. 318-336, March 1992 https://doi.org/10.1109/34.120327
  28. M. Kristc, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, American Mathematical Society, Rhode Island, USA, 1995