• Title/Summary/Keyword: vascular smooth muscle cell

Search Result 190, Processing Time 0.043 seconds

Development of Artificial Vessels with Autologous Bone Marrow Cells and Polymers (자기 골수세포와 고분자 폴리머를 이용한 인공 혈관의 개발)

  • Choi, Jin-Wook;Lim, Sang-Hyun;Hong, You-Sun;Kim, Byung-Soo
    • Journal of Chest Surgery
    • /
    • v.41 no.2
    • /
    • pp.160-169
    • /
    • 2008
  • Bakcground: To treat anastomosis site stenosis and occlusion of the artificial vessels used in vascular surgery, tissue-engineered artificial vessels using autologous cells have been constructed. We developed artificial vessels using a polymer scaffold and autologous bone marrow cells and performed an in vivo evaluation. Material and Method: We manufactured a vascular scaffold using biodegradable PLCL (poly lactide-co-${\varepsilon}$-caprolactone) and PGA (poly glycolic acid) fibers. Then we seeded autologous bone marrow cells onto the scaffold. After implantation of the artificial vessel into the abdominal aorta, we performed an angiography 3 weeks after surgery. After the dogs were euthanized we retrieved the artificial vessels and performed histological analysis. Result: Among the six dogs, 2 dogs died of massive bleeding due to a crack in the vascular scaffold 10 days after the operation. The remaining four dogs lived for 3 weeks after the operation. In these dogs. the angiography revealed no stenosis or occlusion at 3 weeks after the operation. Gross examination revealed small thrombi on the inner surface of the vessels and the histological analysis showed three layers of vessel structure similar to the native vessel. Immunohistochemical analysis demonstrated regeneration of the endothelial and smooth muscle cell layers. Conclusion: A tissue engineered vascular graft was manufactured using a polymer scaffold and autologous bone marrow cells that had a structure similar to that of the native artery. Further research is needed to determine how to accommodate the aortic pressure.

Carpinus turczaninowii extract modulates arterial inflammatory response: a potential therapeutic use for atherosclerosis

  • Son, Youn Kyoung;Yoon, So Ra;Bang, Woo Young;Bae, Chang-Hwan;Yeo, Joo-Hong;Yeo, Rimkyo;An, Juhyun;Song, Juhyun;Kim, Oh Yoen
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.302-309
    • /
    • 2019
  • BACKGOURND/OBJECTIVES: Vascular inflammation is an important feature in the atherosclerotic process. Recent studies report that leaves and branches of Carpinus turczaninowii (C. turczaninowii) have antioxidant capacity and exert anti-inflammatory effects. However, no study has reported the regulatory effect of C. turczaninowii extract on the arterial inflammatory response. This study therefore investigated modulation of the arterial inflammatory response after exposure to C. turczaninowii extract, using human aortic vascular smooth muscle cells (HAoSMCs). MATERIALS/METHODS: Scavenging activity of free radicals, total phenolic content (TPC), cell viability, mRNA expressions, and secreted levels of cytokines were measured in LPS-stimulated (10 ng/mL) HAoSMCs treated with the C. turczaninowii extract. RESULTS: C. turczaninowii extract contains high amounts of TPC ($225.6{\pm}21.0mg$ of gallic acid equivalents/g of the extract), as well as exerts time-and dose-dependent increases in strongly scavenged free radicals (average $14.8{\pm}1.97{\mu}g/mL$ $IC_{50}$ at 40 min). Cell viabilities after exposure to the extracts (1 and $10{\mu}g/mL$) were similar to the viability of non-treated cells. Cytokine mRNA expressions were significantly suppressed by the extracts (1 and $10{\mu}g/mL$) at 6 hours (h) after exposure. Interleukin-6 secretion was dose-dependently suppressed 2 h after incubation with the extract, at $1-10{\mu}g/mL$ in non-stimulated cells, and at 5 and $10{\mu}g/mL$ in LPS-stimulated cells. Similar patterns were also observed at 24 h after incubation with the extract (at $1-10{\mu}g/mL$ in non-stimulated cells, and at $10{\mu}g/mL$ in the LPS-stimulated cells). Soluble intracellular vascular adhesion molecules (sICAM-1) secreted from non-stimulated cells and LPS-stimulated cells were similarly suppressed in a dose-dependent manner after 24 h exposure to the extracts, but not after 2 h. In addition, sICAM-1 concentration after 24 h treatment was positively related to IL-6 levels after 2 h and 24 h exposure (r = 0.418, P = 0.003, and r = 0.524, P < 0.001, respectively). CONCLUSIONS: This study demonstrates that C. turczaninowii modulates the arterial inflammatory response, and indicates the potential to be applied as a therapeutic use for atherosclerosis.

Effects of Antiiflammatory Agents on Acetaldehyde Induced Cytotoxicity (Acetaldehyde 유도 세포독성에 대한 항염증제의 영향)

  • 이수환;이병훈;김강석;문창규
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.3
    • /
    • pp.157-161
    • /
    • 1993
  • In order to get infonnations on the development of alcohol induced cardiovascular disorders, primary cultured vascular smooth muscle cells (PVSMC) were treated with acetaldehyde, one of the most reactive metabolites of ethanol. Acetaldehyde caused the striking release of lactate dehydrogenase (LDH) from PVSMC and it stimulated the prostaglandin synthesis in the same system. But it didn't induce cyclooxygenase activity. lipoxygenase inhibitors-propyl gallate and nordihydroguaiaretic acid could reverse the effect of acetaldehyde, but dexamethasone, a phospholipase $A_2\;(PIA_2)$ inhibitor and cyclooxygenase inhibitors except indomethacin could not protect the cells from acetaldehyde toxicity. These results indicate that enhanced prostaglandin synthesis by acetaldehyde is not a direct cause of cell death, but secondary effect due to the activation of PIAl and also, the roles of the lipoxygenase metabolites and/or $PIA_2$ activity itself might be more important in the cytotoxicity of acetaldehyde.

  • PDF

Oxidative Stress by Arsenic Trioxide in Cultured Rat Cardiomyocytes, $H_9C_2$ Cells (배양 심근세포에서 저농도 삼산화비소에 의한 산화적 스트레스 발생)

  • Park Eun-Jung;Park Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.71-79
    • /
    • 2006
  • Epidemiologic studies have showed a close correlation between arsenic exposure and heart disease such as, cardiovascular problem, ischemic heart disease, infarction, atherosclerosis and hypertension in human. It may increase the mortality of high risk group with heart disease. Regarding the mechanism studies of heart failure, blood vessel, vascular smooth muscle cells and endothelial cells have long been focused as the primary targets in arsenic exposure but there are only a few studies on the cardiomyocytes. In this study, the generation of oxidative stress by low dose of arsenic trioxide was investigated in rat cardiomyocytes. By direct measurement of reactive oxygen species and fluorescent microscopic observation using fluorescent dye 2',7'-dichlorofluorescin diacetate, reactive oxygen species were found to be generated without cell death, where cells are treated with 0.1 ppm arsenic for 24 hours. With the induction of reactive oxygen species, GSH level was decreased by the same treatment. However, DNA damage did not seem to be serious by DAPI staining, while high dose of arsenic (2 ppm for 24 hrs) caused fragmentation of DNA. To identify the molecular biomarkers of low-dose arsenic exposure, gene expression was also investigated with whole genome microarray. As results, 9,022 genes were up-regulated including heme oxygenase-l and glutathione S-transrerase, which are well-known biomarkers of oxidative stress. 9,404 genes were down-regulated including endothelial type gp 91-phox gene by the treatment of 0.1 ppm arsenic for 24 hours. This means that biological responses of cardiomyocytes may be altered by ROS induced by low level arsenic without cell death, and this alteration may be detected clearly by molecular biomarkers such as heme oxygenase-1.

Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3 (Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구)

  • Kang, Ki Ung;Oh, Jun Young;Lee, Yun Ha;Lee, Hye Sun;Jin, Seo Yeon;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1516-1522
    • /
    • 2018
  • Atherosclerosis is an obstructive vessel disease mainly caused by chronic arterial inflammation to which the proliferation and migration of vascular smooth muscle cells (VSMCs) is the main pathological response. In the present study, the primary responsible inflammatory cytokine and its signaling pathway was investigated. The proliferation and migration of VSMCs was significantly enhanced by the prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), while neither was affected by tumor necrosis factor ${\alpha}$. Prostacyclin $I_2$ was seen to enhance the proliferation of VSMCs while simultaneously suppressing their migration. Both prostaglandin $D_2$ and prostaglandin $E_2$ significantly enhanced the migration of VSMCs, however, proliferation was not affected by either of them. The proliferation and migration of VSMCs stimulated by $PGF_{2{\alpha}}$ progressed in a dose-dependent manner; the $EC_{50}$ value of both proliferation and migration was $0.1{\mu}M$. VSMCs highly expressed the phospholipase isoform $C-{\beta}3$ ($PLC-{\beta}3$) while others such as $PLC-{\beta}1$, $PLC-{\beta}2$, and $PLC-{\beta}4$ were not expressed. Inhibition of the PLCs by U73122 completely blocked the $PGF_{2{\alpha}}$-induced migration of VSMCs, and, in addition, silencing $PLC-{\beta}3$ significantly diminished the $PGF_{2{\alpha}}$-induced proliferation and migration of VSMCs. Given these results, we suggest that $PGF_{2{\alpha}}$ plays a crucial role in the proliferation and migration of VSMCs, and activation of $PLC-{\beta}3$ could be involved in their $PGF_{2{\alpha}}$-dependent migration.

Effect of Silk in Silk/PLGA Hybrid Films on Attachment and Proliferation of Human Aortic Endothelial Cells (실크/PLGA 하이브리드 필름에서 실크가 인간 대동맥 내피세포의 부착과 증식에 미치는 효과)

  • Lee, Jihye;Lee, Sojin;Kim, Seulji;Kim, Kyounghee;Kim, Younglae;Song, Jeongeun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.127-134
    • /
    • 2013
  • The vascular endothelial cells are the inner layers of blood vessels. It regulates the function of blood vessels and proliferation of vascular smooth muscle cells. Poly(lactide-co-glycolic acid) (PLGA) is a biodegradable synthetic polymer with a well-controlled degradation rate and an acceptable mechanical strength. It can be easily fabricated into many shapes. Silk consists of 18 amino acids. It found important for attaching cells cultured in vitro, and maintaining cell functions. In this study, we fabricated silk/PLGA biomaterial hybrid films of 0, 10, 20, 40 and 80 wt% silk. We performed MTT, SEM, ELISA, and immunocytochemistry analyses. We confirmed the adhesion and the proliferation of HAECs on silk/PLGA according to the content of silk, and 40 wt% silk/PLGA hybrid films have superior adhesion and proliferation properties. These results demonstrate that silk/PLGA hybrid films provide suitable surfaces for HAECs, and there is the effect of silk on cell growth and proliferation.

Effect of KH-305 on the Nitric Oxide Synthase Activity and Erectile Dysfunction in Young Rats (KH-305 투여가 흰쥐 음경조직의 Nitric Oxide Synthase활성 및 Erectile Dysfunction에 미치는 영향)

  • Lee, Eun-Jeong;Kim, Hee-Seok;Kim, Byoung-Chul;Hwang, Sung-Wan;Hwang, Sung-Yeoun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.3
    • /
    • pp.305-310
    • /
    • 2007
  • This study was designed to investigate the effects of KH-305 on erectile dysfunction in young rats, via nitric oxide (NO)-cGMP pathways. After oral administration of the KH-305 mixture (50, 100, 200, 300 mg/kg) to young rats for 10 days, NOS and SOD protein expressions in penile tissue and testosterone in plasma were measured. cGMP degradation was also investigated using bovine vascular smooth muscle cells pretreated with an NO donor, S-nitroso-N-Acetylpenicillamine (SNAP). The penile expression levels of nNOS and eNOS-dependent NOS activities as well as SOD preventing oxidative stress by overproduction of NO were increased significantly. Also, the concentration of testosterone in the plasma was increased. In vitro, cGMP concen-trations were decreased dose dependently in the KH-305. These results suggest that KH-305 may be useful in erectile dysfunction.

Histopathologic study on the microvascular anastomosis of streptozotocin induced diabetic rats. (스트렙토조토신으로 유도된 당뇨백서에서 미세혈관문합술후 혈관의 조직병리학적 연구)

  • Park, Sung-Jin;Shin, Sang-Hun;Jung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.133-141
    • /
    • 2000
  • Purpose : The purpose of this study is to estabilish clinical guidance of microvascular anastomosis in diabetic patients. This study was performed with experimental microvascular anastomosis in streptozotocin induced diabetic rats and observed histopathologic change and endohelial healing process. Materials and Methods : 70 Sprague-Dawley rats, weighting 200 to 250grams, were used for the experiment. 35 induced diabetic rats with streptozotocin and 35 control group were selected. After end-to-end carotid artery microvascular anastomosis was done, the experimental rats were sacrificed at different time interval (1st day, 3rd day, 1st week, 2nd, 4th, 6th and 8th week) for histologic examination. Light microscope observation was used in this study. Results : 1. Histopathologic changes are nearly the same healing process in two groups. But period of tissue reaction was faster in the control than diabetic group. 2. In endotheliall healing, control group started at 1 week after and completed at 4 weeks after, but diabetic group was observed partially at 4 weeks after and complete healing was not observed still at 8 weeks after. 3. In subintimal hyperplasia, control group was observed at 6 weeks after but diabetic group was observed at 6 weeks after and partially at 8 weeks after. 4. All groups showed severe inflammatory response in the early period. This respond is decreased at 2 weeks after in control group but still remained at 8 weeks after in the diabetic group. 5. In media, inflammatory response and degeneration were observed in early period. Regeneration of smooth muscle cell was observed at 1 week after in control group but 4 weeks after in the diabetic group. Conclusions : As the results of study, it could be thought that vascular regeneration process was not failured but delayed in the diabetes. It was considered that diabetes mellitus was not absolute contraindication of microvascular anastomosis.

  • PDF

Effect of Curcuminoids and Natural Plants Extract Mixture on the Cardiovascular System in Rats (흰쥐에서 Curcuminoid 및 이를 함유한 천연식물 혼합물이 심혈관계에 미치는 영향)

  • 안수현;이종호;박하림;권승택;고유석;손영덕;장양수;정광회
    • Journal of Nutrition and Health
    • /
    • v.36 no.2
    • /
    • pp.101-108
    • /
    • 2003
  • Antiplatelet aggregation, anticoagulant and lipid-lowering drugs are clinically widely used for secondary preventive purpose in the cardiovascular patients, but there is no primary preventive agents to prevent these diseases. With the aim of developing effective primary agents for cardiovascular diseases, we tried to formulate an optimized mixture of natural plants extract containing Theae sinensis, Camelliae sinensis, Vitis vinifera, Gingko folium and curcuminoids from Curcuma longa and to evaluate its anti-thrombotic and anti-hypercholesterolemic effects in vivo. The inhibitory effect of curcuminoids on vascular smooth muscle cell proliferation and migration were also investigated in vitro. in the animal experiments treated with hyperlipidemic diet, oral treatment of curcuminoids and natural plants extracts mixture (100 mg/kg) into male Sprague Dawley rats for 7 week simultaneously inhibited platelet aggregation as well as improved lipid profile in the blood. Compared to control group, both of curcuminoids-treated and mixture-treated groups revealed significantly decrease of total cholesterol (24.4%, 28.6%), free cholesterol (25.1%, 24.0%), cholesterol ester (14.6%, 29.0%), LDL-cholesterol (27.0%, 32.0%) and triglyceride (15.0%, 31.0%), respectively. However, both groups showed increase of HDL-cholesterol (46.6% and 51.5%) . In particular, atherogenic index of curcuminoids and mixture treatment group was significantly decreased to 47.0% and 56.0%, respectively. Furthermore, oral treatment of curcuminoids and mixture significantly inhibited collagen-induced platelet aggregation (21.1% and 29.1%, respectively), compared to control group. The anti-thrombotic values of mixture was almost similar to that of aspirin treatment (100 mg/kg) group. These results suggest that the oral treatment of curcuminoids-based natural plant extract mixture improved cardiovascular conditions in hyperlipidemic rats.

The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells

  • Bae, Yoon-Kyung;Kim, Gee-Hye;Lee, Jae Cheoun;Seo, Byoung-Moo;Joo, Kyeung-Min;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.386-392
    • /
    • 2017
  • Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, ${\alpha}-smooth$ muscle actin, platelet-derived growth factor receptor ${\beta}$, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HUVECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the $SDF-1{\alpha}$ and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the perivascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.