Development of Artificial Vessels with Autologous Bone Marrow Cells and Polymers

자기 골수세포와 고분자 폴리머를 이용한 인공 혈관의 개발

  • Choi, Jin-Wook (Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine) ;
  • Lim, Sang-Hyun (Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine) ;
  • Hong, You-Sun (Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine) ;
  • Kim, Byung-Soo (Department of Chemical Engineering, Hanyang University)
  • 최진욱 (아주대학교 의과대학 흉부외과학교실) ;
  • 임상현 (아주대학교 의과대학 흉부외과학교실) ;
  • 홍유선 (아주대학교 의과대학 흉부외과학교실) ;
  • 김병수 (한양대학교 공과대학 응용화학공학부)
  • Published : 2008.04.05

Abstract

Bakcground: To treat anastomosis site stenosis and occlusion of the artificial vessels used in vascular surgery, tissue-engineered artificial vessels using autologous cells have been constructed. We developed artificial vessels using a polymer scaffold and autologous bone marrow cells and performed an in vivo evaluation. Material and Method: We manufactured a vascular scaffold using biodegradable PLCL (poly lactide-co-${\varepsilon}$-caprolactone) and PGA (poly glycolic acid) fibers. Then we seeded autologous bone marrow cells onto the scaffold. After implantation of the artificial vessel into the abdominal aorta, we performed an angiography 3 weeks after surgery. After the dogs were euthanized we retrieved the artificial vessels and performed histological analysis. Result: Among the six dogs, 2 dogs died of massive bleeding due to a crack in the vascular scaffold 10 days after the operation. The remaining four dogs lived for 3 weeks after the operation. In these dogs. the angiography revealed no stenosis or occlusion at 3 weeks after the operation. Gross examination revealed small thrombi on the inner surface of the vessels and the histological analysis showed three layers of vessel structure similar to the native vessel. Immunohistochemical analysis demonstrated regeneration of the endothelial and smooth muscle cell layers. Conclusion: A tissue engineered vascular graft was manufactured using a polymer scaffold and autologous bone marrow cells that had a structure similar to that of the native artery. Further research is needed to determine how to accommodate the aortic pressure.

배경: 혈관질환의 수술에 사용되는 인공 도관의 막힘과 문합부위의 좁아짐 등을 개선하기 위한 방법으로 조직공학적인 방법과 자가 세포를 이용한 인공혈관의 제작이 대안으로 대두되고 있다. 저자들은, 생흡수성이 있는 고분자 폴리머 지지체와 자가 골수세포를 이용한 인공혈관으로 생체실험을 시행하였다. 대상 및 방법: 생분해성 고분자 재료인 poly (lactide-co-${\varepsilon}$-caprolactone) (PLCL)과 poly(glycolic acid) (PGA) fiber로 혈관용 지지체를 제작한 후, 피실험 동물의 골수를 채취하여 혈관 내피 세포와 평활근 세포로 분열시켜 배양한 후 혈관 지지체위에 이식하였다. 만들어진 인공 혈관을 잡견의 복부대동맥에 이식한 후 3주 후에 혈관 조영술을 시행하고, 안락사 후에 혈관을 제거하여 조직학적 검사를 시행하였다. 결과: 6마리의 잡견 중 2마리에서 수술 후 10일에 혈관 지지체의 균열에 의한 대량 출혈로 사망하였다. 나머지 4마리의 잡견은 수술 후 3주까지 생존하였으며, 혈관 조영술상 혈관의 막힘이나 좁아짐은 발견되지 않았다. 인공 혈관의 내면은 작은 혈전들이 붙어 있었으며, 조직학 검사에서 정상 혈관과 유사한 3층의 구조를 나타내었다. 또한 면역화학 검사에서 혈관 내피세포와 혈관 평활근 세포가 재생된 것을 확인하였다. 결론: 고분자 폴리머와 자가 골수세포를 이용한 인공혈관은 생체 내에서 정상혈관과 유사한 모양으로 재생이 가능함을 보여주었다. 그러나, 동맥압력에 견디기 위해 혈관 지지체의 물성에 대한 개량과 충분한 양의 혈관 세포를 얻기 위한 연구가 더 필요할 것으로 생각된다.

Keywords

References

  1. Chard RB, Johnson DC, Nunn GR, Cartmill TB. Aorta- coronary bypass grafting with polytetrafluroethylene conduits. Early and late outcome in eight patients. J Thorac Cardiovasc Surg 1987;4:132-134
  2. Bhattacharya V, Mcsweeney PA, Shi Q, et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD $34^+$ bone marrow cells. Blood 2000;95:581-585
  3. Deutsch M, Meinhart J, Fischlein T, Preiss P, Zilla P. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: $\alpha$ 9-year experience. Surgery 1999;126:847-855 https://doi.org/10.1016/S0039-6060(99)70025-5
  4. Laube HR, Duwe J, Rutsch W, Konertz W. Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J Thorac Cardiovasc Surg 2000;120:134-141 https://doi.org/10.1067/mtc.2000.106327
  5. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient's own peritonel cavity. Circ Res 1999;85:1173-1178 https://doi.org/10.1161/01.RES.85.12.1173
  6. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science 1999;284:489-493 https://doi.org/10.1126/science.284.5413.489
  7. Owen ME, Cave J, Jovner CJ. Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci 1987; 87:731-738
  8. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001;7:1035-1040 https://doi.org/10.1038/nm0901-1035
  9. Shi Q, Rafii S, Wijelath ES, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362-367
  10. Shimizu K, Sugiyama S, Aikawa M, et al. Host bone-marrow cells are a source of donor intimal smooth muscle-like cells in murine aortic transplant arteriopathy. Nat Med 2001;7:738-741 https://doi.org/10.1038/89121
  11. Cho SW, Lim SH, Kim IK, et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 2005;241:506-515 https://doi.org/10.1097/01.sla.0000154268.12239.ed
  12. Lim SH, Cho SW, Hong YS, et al. In vivo experiment of tissue-engineered artificial vessel. Korean J Thorac Cardiovasc Surg 2004;37:220-227
  13. Zund G, Hoerstrup SP, Schoeberlein A, et al. Tissue engineering: a new approach in cardiovascular surgery; Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg 1998;13:160-164 https://doi.org/10.1016/S1010-7940(97)00309-6
  14. Widmer M, Guputa PK, Lu G, et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 1998;19:1945-1955 https://doi.org/10.1016/S0142-9612(98)00099-4
  15. Shinoka T, Matsumura K, Hibino N, et al. Clinical practice of transplantation of regenerated blood vessels using bone marrow cells. Nippon Naika Gakkai Zasshi 2003;92:1776-1780 https://doi.org/10.2169/naika.92.1776