• Title/Summary/Keyword: variational reduction.

Search Result 34, Processing Time 0.033 seconds

Harmonic Axisymmetric Thick Shell Element for Static and Vibration Analyses

  • Kim, Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1747-1754
    • /
    • 2004
  • In this study, a new harmonic axisymmetric thick shell element for static and dynamic analyses is proposed. The newly proposed element considering shear strain is based on a modified Hellinger-Reissner variational principle, and introduces additional nodeless degrees for displacement field interpolation in order to enhance numerical performance. The stress parameters selected via the field-consistency concept. are very important in formulating a trouble-free hybrid-mixed elements. For computational efficiency, the stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the dynamic reduction. Several numerical examples confirm that the present element shows improved efficiency and yields very accurate results for static and vibration analyses.

SIX SOLUTIONS FOR THE SEMILINEAR WAVE EQUATION WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.361-369
    • /
    • 2012
  • We get a theorem which shows the existence of at least six solutions for the semilinear wave equation with nonlinearity crossing three eigenvalues. We obtain this result by the variational reduction method and the geometric mapping defined on the finite dimensional subspace. We use a contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three-dimensional subspace with three axes spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one-dimensional subspace.

The existence of solutions of a nonlinear suspension bridge equation

  • Park, Q-heung;Park, Kyeongpyo;Tacksun Jung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.503-512
    • /
    • 1996
  • In this paper we investigate a relation between the multiplicity of solutions and source terms in a nonlinear suspension bridge equation in the interval $(-\frac{2}{\pi}, \frac{2}{\pi})$, under Dirichlet boundary condition $$ (0.1) u_{tt} + u_{xxxx} + bu^+ = f(x) in (-\frac{2}{\pi}, \frac{2}{\pi}) \times R, $$ $$ (0.2) u(\pm\frac{2}{\pi}, t) = u_{xx}(\pm\frac{2}{\pi}, t) = 0, $$ $$ (0.3) u is \pi - periodic in t and even in x and t, $$ where the nonlinearity - $(bu^+)$ crosses an eigenvalue $\lambda_{10}$. This equation represents a bending beam supported by cables under a load f. The constant b represents the restoring force if the cables stretch. The nonlinearity $u^+$ models the fact that cables expansion but do not resist compression.

  • PDF

A Hybrid ON/OFF Method for Fast Solution of Electromagnetic Inverse Problems Based on Topological Sensitivity

  • Kim, Dong-Hun;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.240-245
    • /
    • 2011
  • A new hybrid ON/OFF method is presented for the fast solution of electromagnetic inverse problems in high frequency domains. The proposed method utilizes both topological sensitivity (TS) and material sensitivity (MS) to update material properties in unit design cells. MS provides smooth design space and stable convergence, while TS enables sudden changes of material distribution when MS slows down. This combination of two sensitivities enables a reduction in total computation time. The TS and MS analyses are based on a variational approach and an adjoint variable method (AVM), which permits direct calculation of both sensitivity values from field solutions of the primary and adjoint systems. Investigation of the formulations of TS and MS reveals that they have similar forms, and implementation of the hybrid ON/OFF method that uses both sensitivities can be achieved by one optimization module. The proposed method is applied to dielectric material reconstruction problems, and the results show the feasibility and effectiveness of the method.

A Variational Inequality Model of Traffic Assignment By Considering Directional Delays Without Network Expansion (네트웍의 확장없이 방향별 지체를 고려하는 통행배정모형의 개발)

  • SHIN, Seongil;CHOI, Keechoo;KIM, Jeong Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.77-90
    • /
    • 2002
  • Network expansion has been an inevitable method for most traffic equilibrium assignments to consider intersection movements such as intersection delays. The drawback of network expansion is that because it dramatically increases network sizes to emulate possible directional movements as corresponding links, not only is complexities for building network amplified, but computational performance is shrunk. This paper Proposes a new variational inequality formulation for a user-optimal traffic equilibrium assignment model to explicitly consider directional delays without building expanded network structures. In the formulation, directional delay functions are directly embedded into the objective function, thus any modification of networks is not required. By applying a vine-based shortest Path algorithm into the diagonalization algorithm to solve the problem, it is additionally demonstrated that various loop-related movements such as U-Turn, P-Turn, etc., which are frequently witnessed near urban intersections, can also be imitated by blocking some turning movements of intersections. The proposed formulation expects to augment computational performance through reduction of network-building complexities.

Free Vibration Analysis of Arches Using Higher-Order Mixed Curved Beam Elements (고차 혼합 곡선보 요소에 의한 아치의 자유진동해석)

  • Park Yong Kuk;Kim Jin-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.18-25
    • /
    • 2006
  • The purpose of this research work is to demonstrate a successful application of hybrid-mixed formulation and nodeless degrees of freedom in developing a very accurate in-plane curved beam element for free vibration analysis. To resolve the numerical difficulties due to the spurious constraints, the present element, based on the Hellinger-Reissner variational principle and considering the effect of shear deformation, employed consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees. The stress parameters were eliminated by the stationary condition, and the nodeless degrees were condensed by Guyan Reduction. Several numerical examples indicated that the property of the mass matrix as well as that of the stiffness matrix have a great effect on the numerical performance. The element with consistent mass matrix produced best results on convergence and accuracy in the numerical analysis of Eigenvalue problems. Also, the higher-order mixed curved beam element showed a superior numerical behavior for the free vibration analyses.

Finite-EIement Analysis with Localized Functional for Alternating Magnetic Field Problems (국부범함수를 사용한 교류자장 문제의 유한요소 해석)

  • 김원범;정현교;고창섭;한송엽
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.79-84
    • /
    • 1991
  • A variational approach employing localized functional is presented to solve alternating magnetic field problems with open boundary. The functional used in the approach consists of the domain integral of finite element region only and the boundary integral of the interfacial boundary between the finite and infinite element regions. The boundary integral is obtained by transforming the infinite domain integral for the infinite element region into the interfacial boundary integral. The proposed algorithm is then applied to a simple two-dimensional problem where the analytic solutions are available. It is shown that the algorithm makes it possible to yield good agreements between the numerical and analytic solutions. and that it requires less computer storage memory and computation time than the conventional finite element method due to the reduction of the computing region.

  • PDF

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.

A New Higher-Order Hybrid-Mixed Element for Curved Beam Vibrations (곡선보의 자유진동해석을 위한 고차 혼합요소)

  • Kim Jin-Gon;Park Yong-Kuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.151-160
    • /
    • 2006
  • In this study, we propose a new efficient 2-noded hybrid-mixed element for curved beam vibrationshaving a uniform and non-uniform cross section. The present element considering transverse shear strain is based on Hellinger-Reissner variational principle and introduces additional nodeless degrees for displacement field interpolation in order to enhance the numerical performance. The stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the Guyan reduction. In the performance evaluation process of the present field-consistent higher-order element, we carefully examine the effects of field consistency and the role of higher-order interpolation functions on the hybrid-mixed formulation. Several benchmark tests confirm e superior behavior of the present hybrid-mixed element for curved beam vibrations.

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.