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THE EXISTENCE OF SOLUTIONS OF A
NONLINEAR SUSPENSION BRIDGE EQUATION

Q-HeEunG Chot!', KYEONGPYO CHOI AND TACKSUN JUNG?

0. Introduction

In this paper we investigate a relation betwern the multiplicity of
solutions and source terms in a nonlinear suspension bridge equation in

the interval (—77;-, 175) . under Dirichlet boundary condition

(0.1) vt tsss +but = f(r) in (=3,3) < R,
T 7

(0.2) u(i—2—,t):u”(:t§,t) =0,

(0.3) u is m—periodic in t and even in z and t,

where the nonlinearity —(but) crosses an eigenvalue A19. This equation
represents a bending beam supported by cables under a load f. The
constant b represents the restoring force if the cables stretch. The
nonlinearity ut models the fact that cables resist expansion but do not
resist compression.
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Let L be the differential operator, Lu = uy + Uy zz-- Then the eigen-
value problem for u(z, )
_ T,
Lu =Au in (*5, 5) x R
with (0.2} and (0.3), has infinitely many eigenvalues

Amn = (2n+1)" —dm*  (m,n=10,1,2,--)

and corresponding eigenfunctions @m,(m,n > 0) given by
Pmn = c0s 2mt cos(2n + 1)z.

We note that all eigenvalues in the interval (—19,45) are given by

Ao =—15<A1p=-3 < Ago=1< Ay =1T.

Let @) be the square [—g—, %] X [—-5—, -TZF} and H the Hilbert space

defined by

H={uelL*Q): wuiscveninz andt }.

Then the set of eigenfunctions {¢,,,} is an orthonormal base in H.
Hence equation (0.1) with (0.2) and (0.3) is equivalent to

Lu+but=f in H.

In this paper we shall concern with only the case that the nonlinearity
—bu™ crosses an eigenvalue Ajq. In [3, 4. 6], the authors investigate the
existence of solutions of a nonlinear suspension bridge equation (0.1),
where the forcing term f is supposed to be 1+ €h ( h is bounded ) and
the nonlinearity —(bu™) crosses an cigenvalue A;y. Our concern is the
case that f is generated by two eigenfunctions ¢gp and ¢o.

It is a well known fact (cf. Theorem 1.1 of [4]) that if f € H and
—1 < b < 3, then equation (0.1) with (0.2) and (0.3) has a unique
solution.

In this paper we suppose that 3 < b < 15 and f is generated by ég0
and ¢19. Our goal is to reveal two regions Ry, Ry in two dimensional
subspace space of the Hilbert space H spanned by $q9 and ¢, that (i)
if f € Ry then (0.1) has a positive solution and (ii) if f € R, then (0.1)
has a negative solution (cf. Theorem 1.1). Finally we give a conjecture
which reveals a relation between the multiplicity of solutions and source
terms.
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1. A Variational Reduction Method

In this section, we suppose 3 < b < 15. Uader this assumption,
we have a concern with the multiplicity of solutions of a nonlinear
suspension bridge equation

(1.1) Lu+bu™=f in H

Here we suppose that f is generated by two eigenfunctions ¢gg and ¢,
that iS, f = Slgﬁgg + 32(,‘510(8],.‘:2 € R)

To study equation (1.1), we use the contraction mapping theorem to
reduce the problem from an infinite dimensional one in H to a finite
dimensional one.

Let V' be the two dimensional subspace of H spanned by {¢00, d10}
and W be the orthogonal complement of V in H Let P be an orthog-
onal projection H onto V. Then every element u € H is expressed
by

U= v+ w,
where v = Pu, w = (I — P)u. Hence equation (1.1) is equivalent to a
system

(1.2) Lw + (I = P)(b(v +w)*) =0,
Lo+ P(b(v+w)") = s1¢00 + 52010

Here we look on (1.2) and (1.3) as a system of two equations in the
two unknowns v and w.

LEMMA 1.1. For fixed v € V, (1.2) has a unique solution w = B(v).
Furthermore, 6(v) is Lipschitz continuous (with respect to the L? norm)
in terms of v,

Proof. We use the contraction mapping theorern. Let § = rl;b. Rewr-
ite (1.2) as

(=L —8)w= (I~ P)blv+w)" —b(v+w)),
or equivalently,

(1.4) w=(~L—6)""(I - Pgy(w),
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where
go(w) = b(v + w)t — 8(v + w).
Since
lgo(w1) = gu(wy)] < |b— 68]|w) — ual,
we have

“gv(wl) - gv(wQ,)” < Ib - 6!”“/'1 — 7.”2”7

where || || is the L? norm in H. The operator (~L —68)~'(I — P) is a self
adjoint compact linear map from (I — P)H into itself. The eigenvalues
of (L — &)Y (I — P)in W are (Apn — 6)"!, where A\,;n < —15 or
Amn > 17. Therefore its L? norm is max{—l—g—%«g,ﬁ}. Since
|b — é] < min{l5 — 8,17 + 6}, it follows that for fixed v € V, the
right hand side of (1.4) defines a Lipschitz mapping W into itself with
Lipschitz constant v < 1. Hence, by the contraction mapping principle,
for given v € V|, there is a unique w € W which satisfies (1.2).

Also, it follows, by the standard argument principle, that 8(v) is
Lipschitz continuous (with respect to the L? norm) in terms of v.

By Lemma 1.1, the study of the multiplicity of solutions of (1.1) is
reduced to the study of the multiplicity of solutions of an equivalent
problem

(15) LT,?+P(b(l)+9(U>)+ = 31¢00 4—82(,510

defined on the two dimensional subspace V spanned by {¢g0, ¢10}-
While one feels instinctively that (1.5) ought to be easier to solve,
there is the disadvantage of an implicitly defined term 6(v) in equation
(1.5). However, in our case, it turns out that we know 6(v) for special
V8.
If v >0o0rv <0, then 8(v) = 0. For example, let us take v > 0 and
f(v) = 0. Then equation (1.2) reduces to

LO+ (I - P)(bvt) =0
which is satisfied because vt = v and (I — P)v = 0, since v € V.
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Since the subspace V' is spanned by {¢og, 10}, there exists a cone

C; defined by
Cr={v=cigoo+c2d10 | c1 2 0,]c2] < e}
so that v > 0 for all v € ('} and a cone Cy defincd by

Cy = {v=c1¢00 + 210 | c1 <0,

o] < e}

so that v <0 for all v € C5.

Thus, even if we do not know 6(v) for all v € V| we know 6{v) =0
forve CyuCs.

Now, we define a map @ : V7 — V given by

(1.6) ®(v) = Lv + P(b(v +8(v)*), €WV

Then @ is continuous on V, since € is continuous on V' and we have the
following lemma.

LEMMA 1.2, ®(cv) = c®(v) fore >0 and v e V.

Proof. Let ¢ > 0. If v satisfies
Lé(v) + (I — P)(b(v +8(v))") =0,

then

L(c8(v)) + (I = P)(b(cv + cB(v))") =0

and hence #(cv) = cf(v). Therefore we have

(I)(C’U) :L(CU) + P( b(CU + G(CUT )+)
~L(ev) + P(bev + v )
=c®(v).

Lemma 1.2 implies that ® maps a cone with vertex 0 onto a cone with
vertex 0. Now we investigate the image of the cones Cy and ('3 under
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®. First we consider the image of the cone Cy. If v = ¢;dog+ 2019 > 0,
we have

®(v) =L(v) + P(b(v + 6(v))")
=c1Agopoo — caX 0010 + b(cidoo + c2¢10)
=c1(b + Aoo)@oo + c2(b — Aig)d10.

Thus the images of the rays c1¢gg £ ¢1¢19(c; > J) can be explicitly
calculated and they are

c1{b+ Aoo)duo T er(b+ Aio)dio (c1 = 0).
Therefore ® maps C; onto the cone

, b+ Ao
R, {dm?oo +dydio | dy 2 0,]da] < (—b +-_/\ou) ‘ 1}

Here the restriction ®|¢, : C; — R, is bijective. Second we consider
the image of the cone Cy. If

v= =140+ 2610 S0 (¢ 20, [ep] <ey),
we have

®(v) =L(v) + P(b(v + (v))T)
=Lv + P(0)
=~ ¢ Aoo%oo + c2A10010-

Thus the images of the rays —ci¢g0 1619 (¢; > 0) can be explicitly
calculated and they are

—c1 00000  c1 M od10 (c; 2> 0).

Thus & maps the cone C3 onto the cone
A
Ry = {d1¢00 + d2¢10 | di1 <0, dy < I—)\—lli|d1|}
B

Here the restriction ®|¢, : C3 — Rj3 is bijective. We note that R, is in
the right half plane and Rj is in the left half plane.
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THEOREM 1.1. (i) If f belongs to R;, then equation (1.1) has a
positive solution.
(i1) If f belongs to Rj, then equation (1.1) has a negative solution.

Now we set
Ca = {c1¢00 + 2610 | c2 20, ¢z 2> ey},

Cy = {c1d00 + 2010 | c2 0, c2 < —|ey]}.

Then the union of Cy, Cy, Cs, C4 1s the space V.
Lemma 1.2 means that the images ®(C3) and ®(Cy) are the cones
in the plane V. Before we investigate the images ®(C5) and ®(Cy), we

set,
d2 } s

Aoo . (b+ )\oo> }
d, < d, < d, b .
/\10l 2= b+ Mo :

Then the union of R;, R}, R3, R} is the plane V
To investigate a relation between the multiplicity of solutions and
source terms in a nonlinear suspension bridge equation

b+ Aoo

, Aoo
) =<d +d dy >0, —|—|dy <d; <
9 {1%0 2010 | d2 > '/\10' 2 <dy < b hr

= {dl%o +dydyy | dy <0,

(1.6) Lu+4+but =f in H

we consider the restrictions ¢

¢i = (I)|Cia i.C.,

(1 <2 <4) of @ to the cones C';. Let

P, C;, > V.

For « = 1,3, the image of ®; is R, and @, : C; — R; is bijective. From
now on, our goal is to find the image of C; under ®, for ¢ = 2,4.
Suppose that v is a simple path in Cy without meecting the origin,
and end points (initial and terminal) of v lie on the boundary ray of Cy
and they are on each other boundary ray. Then the image of one end
point of v under @ is on the ray ¢ (b+ Aoo) oo +c1(b+Arip)d10.¢1 > 0 (a
boundary ray of R|) and the image of the other end point of v under @
i1s on the ray —c;Aggdoo + c1A10, ¢ 2> 0 (a boundary ray of R3). Since
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® is continuous, ®(7) is a path in V. By Lemma 1.2, ®(~) does not
meet the origin. Hence the path ®(v) meets all rays (starting from the
origin) in Ry U R} or all rays (starting from the origin) in R U Rj.
Thercfore it follows from Lemma 1.2 that the image ®(Cs) of C,
contains one of sets R; U R} and R, U Rs.
Similarly, we have that the image ®(C4) of Cy4 contains one of sets

Rl U Ré and RQ U Rg.

LEMMA 1.3. Let A be one of the sets Ry U R}, and R, U Ry such
that it is contained in ®(Cy). Let v be any simple path in A with end
points on OA, where each ray (starting from the origin) in A intersect
only one point of 7. Then the inverse image ®;''%) of v is a simple
path in Cy with end points on 0Cy, where any ray (starting from the
origin) in C5 intersects only one point of this path.

Proof. We note that ®,'(7) is closed since ® is continuous and v is
closed in V. Suppose that there is a ray (starting from the origin) in
C which intersects two points of ®; (%), say, p, ap(a > 1). Then by
Lemma 1.2,

@, (ap) = a®y(p),

which implies that ®;(p) € v and ®3(ap) € 4. This contradicts that
each ray (starting from the origin) in A intersect only one point of 5.

We regard a point p as a radius vector in the plane V. Then for a
point p in V, we define the argument argp of p by the angle from the
positive ggo-axis to p.

We claim that ®;'() meets all ray (starting from the origin) in Cs.
In fact, if not, ®,'(y) is disconnected in Cy. Since $,'(7) is closed
and meets at most one point of any ray in A, there are two points p,
and p, in C3 such that @2_](7) does not contain any point p with

arg p; < argp < arg ps.

On the other hand, if we let | the segment with end points p; and p,,
then ®,(1) 1s a path in A, where ®3(p;) and ®,(p,) belong to y. Choose
a point ¢ in ®,(!) that arg ¢ is between arg ®,(p; )} and arg ®5(p,). Then
there exist a point ¢’ such that ¢' = B¢ for some 3 > 0. But ®;'(¢")
meets | and

argpy < arg ®; '(¢') < arg ps,
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which is a contradiction. This completes the lemma.
Similarly, we have the following lemma.

LeMMA 1.3°. Let A be one of the sets Ry U R, and R} U R3 such
that it is contained in ®(Cy4). Let v be any simple path in A with end
points on 0A, where each ray (starting from the origin) in A intersect
only one point of v. Then the inverse image @, Y(4) of v is a simple
path in Cy with end points on 0Cy, where any ray (starting from the
origin) in Cy intersects only one point of this path.

With Lemma 1.3 and Lemma 1.3', we have the following theorem,
which 1s very important to investigate a relation between the multi-
plicity of solutions and source terms in a nonlinecar suspension bridge
equation.

THEOREM 1.2. Fori1 = 2,4, if we let ®,(C;) = R,, then R, is one of
sets Ry U R}, Ry U Ry and Ry is one of sets Ry U R, R, U R;.

Foreach 1 < i <4, therestriction ®; maps C; onto R;. In particular,
®, and ®3 are bijective.

If we determine the images ®;(C;) for ¢« = 2,4, we can reveal a
relation between the multiplicity of solutions and source termns in the
nonlinear bridge equation. If the solution of (1.5) is in Cy, then it 1s
positive. If the solution of (1.5) is in C3, then it i1s negative. If the
solution of (1.5} is in IntCy U C4, then it has both signus.

Therefore we can get the following.

REMARK. We conjecture that ®,(Cy) = RyUR,, ®,(Cy) = RyURS.
In this case we have: (i) If f € IntR,, then equation (1.1) has a positive
solution and at least two sign changing solutions (i) If f € IntR), or
f € IntRj, then equation (1.1) has at least one sign changing solution.
(ii) If f € R3, then equation (1.1) has only the negative solution.
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