• 제목/요약/키워드: variation in 3-D

검색결과 1,922건 처리시간 0.039초

Post Silicon Management of On-Package Variation Induced 3D Clock Skew

  • Kim, Tak-Yung;Kim, Tae-Whan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권2호
    • /
    • pp.139-149
    • /
    • 2012
  • A 3D stacked IC is made by multiple dies (possibly) with heterogeneous process technologies. Therefore, die-to-die variation in 2D chips renders on-package variation (OPV) in a 3D chip. In spite of the different variation effect in 3D chips, generally, 3D die stacking can produce high yield due to the smaller individual die area and the averaging effect of variation on data path. However, 3D clock network can experience unintended huge clock skew due to the different clock propagation routes on multiple stacked dies. In this paper, we analyze the on-package variation effect on 3D clock networks and show the necessity of a post silicon management method such as body biasing technique for the OPV induced 3D clock skew control in 3D stacked IC designs. Then, we present a parametric yield improvement method to mitigate the OPV induced 3D clock skew.

Machine Learning Based Variation Modeling and Optimization for 3D ICs

  • Samal, Sandeep Kumar;Chen, Guoqing;Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • 제14권4호
    • /
    • pp.258-267
    • /
    • 2016
  • Three-dimensional integrated circuits (3D ICs) experience die-to-die variations in addition to the already challenging within-die variations. This adds an additional design complexity and makes variation estimation and full-chip optimization even more challenging. In this paper, we show that the industry standard on-chip variation (AOCV) tables cannot be applied directly to 3D paths that are spanning multiple dies. We develop a new machine learning-based model and methodology for an accurate variation estimation of logic paths in 3D designs. Our model makes use of key parameters extracted from existing GDSII 3D IC design and sign-off simulation database. Thus, it requires no runtime overhead when compared to AOCV analysis while achieving an average accuracy of 90% in variation evaluation. By using our model in a full-chip variation-aware 3D IC physical design flow, we obtain up to 16% improvement in critical path delay under variations, which is verified with detailed Monte Carlo simulations.

1D-3D 연동해석을 통한 흡기 매니폴드 형상이 실린더별 유동 분배에 미치는 영향 평가 (Evaluate the Effect of the Intake Manifold Geometry on Cylinder-to-cylinder Variation Using 1D-3D Coupling Analysis)

  • 박상준;조정근;송순호;조자윤;왕태중
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.161-168
    • /
    • 2016
  • CNG engine has been used as a transportation because of higher thermal efficiency and lower CO2 and particulate matter. However its out put power is decreased due to cylinder-to-cylinder variation during the supply of air-fuel mixture to the each cylinder. It also causes noise and vibration. So in this study, 1D engine simulation model was validated by comparison with experiment data and 3D CFD simulation was conducted to steady-state flow analysis about each manifold geometry. Then, the effects of various intake manifold geometries on variation were evaluated by using 1D-3D coupling analysis at engine speed of 2100 rpm range in 12 L CNG engine. As a result, variation was improved about 4 % though 3D CFD analysis and there was a variation within 3 % using 1D-3D coupling analysis.

Pose-normalized 3D Face Modeling for Face Recognition

  • Yu, Sun-Jin;Lee, Sang-Youn
    • 한국통신학회논문지
    • /
    • 제35권12C호
    • /
    • pp.984-994
    • /
    • 2010
  • Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.

자동 3차원 얼굴 포즈 정규화 기법 (Automatic 3D Head Pose-Normalization using 2D and 3D Interaction)

  • 유선진;김중락;이상윤
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.211-212
    • /
    • 2007
  • Pose-variation factors present a significant problem in 2D face recognition. To solve this problem, there are various approaches for a 3D face acquisition system which was able to generate multi-view images. However, this created another pose estimation problem in terms of normalizing the 3D face data. This paper presents a 3D head pose-normalization method using 2D and 3D interaction. The proposed method uses 2D information with the AAM(Active Appearance Model) and 3D information with a 3D normal vector. In order to verify the performance of the proposed method, we designed an experiment using 2.5D face recognition. Experimental results showed that the proposed method is robust against pose variation.

  • PDF

고유전율 게이트 산화막을 가진 적층형 3차원 인버터의 일함수 변화 영향에 의한 문턱전압 변화 조사 (Investigation of threshold voltage change due to the influence of work-function variation of monolithic 3D Inverter with High-K Gate Oxide)

  • 이근재;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.118-120
    • /
    • 2022
  • 본 논문은 M3D(Monolithic 3-Dimension) Inverter의 소자 구조에서 메탈 게이트의 WFV(Work-function Variation)의 영향에 따른 임계전압의 변화에 대하여 조사했다. 또한 PMOS 위에 NMOS가 적층된 인버터의 전기적 상호작용에 따른 임계전압의 변화를 조사하기 위해 PMOS에 0과 1 V의 전압을 인가하여 전기적 상호작용을 조사하였다. 사용된 메탈 게이트의 평균 일함수에 대한 임계전압의 변화량은 0.1684 V로 측정되었고, 표준편차는 0.00079 V가 조사 되었다.

  • PDF

Characteristic Variation of 3-D Solenoid Embedded Inductors for Wireless Communication Systems

  • Shin, Dong-Wook;Oh, Chang-Hoon;Kim, Kil-Han;Yun, Il-Gu
    • ETRI Journal
    • /
    • 제28권3호
    • /
    • pp.347-354
    • /
    • 2006
  • The characteristic variation of 3-dimensional (3-D) solenoid-type embedded inductors is investigated. Four different structures of a 3-D inductor are fabricated by using a low-temperature co-fired ceramic (LTCC) process, and their s-parameters are measured between 50 MHz and 5 GHz. The circuit model parameters of each building block are optimized and extracted using the partial element equivalent circuit method and an HSPICE circuit simulator. Based on the model parameters, the characteristics of the test structures such as self-resonant frequency, inductance, and quality (Q) factor are analyzed, and predictive modeling is applied to the structures composed of a combination of the modeled building blocks. In addition, characteristic variations of the 3-D inductors with different structures using extracted building blocks are also investigated. This approach can provide a characteristic estimation of 3-D solenoid embedded inductors for structural variations.

  • PDF

비선형 전변동을 이용한 초점거리 변화 기반의 3 차원 깊이 측정 방법 (3D Shape Recovery Using Image Focus through Nonlinear Total Variation)

  • 무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.27-32
    • /
    • 2013
  • Shape From Focus (SFF) is a passive optical technique to recover 3D structure of an object that utilizes focus information from 2D images of the object taken at different focus levels. Mostly, SFF methods use a single focus measure to compute image focus quality of each pixel in the image sequence. However, it is difficult to recover accurate 3D shape using a single focus measure, as different focus measures perform differently in diverse conditions. In this paper, a nonlinear Total Variation (TV) based approach is proposed for 3D shape recovery. To improve the result of surface reconstruction, several initial depth maps are obtained using different focus measures and the resultant 3D shape is obtained by diffusing them through TV. The proposed method is tested and evaluated by using image sequences of synthetic and real objects. The results and comparative analysis demonstrate the effectiveness of our method.

세계 14지역 계통에 대한 초파리 미토콘드리아 DNA의 다형현상 (Mitochondrial DNA polymorphism in Fourteen Geographical Strains of Drosophila melanogoater)

  • 김봉기
    • 한국동물학회지
    • /
    • 제31권3호
    • /
    • pp.218-224
    • /
    • 1988
  • Drosophila melanogaster의 세계 14지역 계통으로부터 mitochondrial DNA(mtDNA)를 추출하여, 제한 요소에 의하여 mtDNA종내 변이를 조사하였다. 그 결과, site variation(Hpall와 Haelll 및 Seal효소)과 length variation(최대550bp)이 나타났다. 또한 6종류(Ml, M2, M3, M4, M6 및 M7)의 mtDNA genotype이 검출되었으며, 종내 평균 염기 치환율은 1.88%로써 낮은 지역 분화(low divergence)를 나타내었다. 그러나 일본의 Ogasawara계통의 M5 type은 본 연구에서는 검출되지않았다. 이처럼 지역 계통간의 낮은 지역 분화는 세계14지역 계통의 D. melanogaster가 최근에 소수의 개체로부터 확산되었기 때문에 집단전체에 아직 충분한 mtDNA변이가 축적되지 않았거나 혹은 지리적 격리가 충분함에도 불구하고 지역 계통간에 빈번한 migration이 일어났기 때문에 mtDNA의 지역 분화가 방해되지않은 것으로 추측된다.

  • PDF

경사기능 복합재료 판의 기계적 강도해석 (Mechanical strength analysis for functionally graded composite plates)

  • 나경수;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF