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Mechanical strength analysis
for functionally graded composite plates
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ABSTRACT

Mechanical strength of functionally graded composite plates that composed of ceramic, functionally
graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material
properties are assumed to be varied continuously in the thickness direction according to a simple power law
distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted

by using an [8-node solid element to analyze more accurately the variation of material properties in the
thickness direction. Numerical results are compared with those of the previous works. In addition, the
displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM

thickness ratio and volume fraction distribution.

1. Introduction

Functionally graded materials (FGMs) have been
designed and developed in many engineering parts that
need to be super heat resistant, such as thermal barrier
materials for aerospace structural applications and fusion
reactors. In FGMs, material properties vary smoothly and
continuously from one surface to the other, especially
from metal to ceramic. From this smooth and continuous
change in composition, FGMs can withstand extremely
high temperature environments while maintain their
structural integrity.

Jin and Batra [1] studied the effects of loading
conditions, specimen size and metal particle size on the
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crack growth resistance curve and residual strength of a
FGM based on the crack-bridging concept. It was found
that the FGM exhibited strong R-curve behavior when a
crack grew from the ceramic-rich region toward the
metal-rich region and the residual strength of the FGM
with an edge crack at the ceramic side was notch-
insensitive. Tanaka et al. [2] formulated a method of
macroscopic material tailoring in order to reduce
globally the thermal stresses induced in the FGMs, with
the help of the direct sensitivity analysis and the
multiobjective optimization technique associated with
the heat conduction/thermal stress analysis by means of
incremental FGM. Na and Kim [3] analyzed nonlinear
bending of functionally graded plates subjected to
uniform pressure and thermal loads using 3-D finite
element method. Oota et al. [4] applied a genetic
algorithm to an optimization problem of minimizing the
thermal stress distribution for a plate of step-formed



FGMs. The step-formed FGM plate was analyzed as a
laminated composite plate made of numerous layers with
homogeneous and different isotropic material properties.
Cho and Choi [5] explored the suitability of the yield-
stress-calibrated objective function for maximizing the
yield strength of heat-resisting FGMs. They used two-
level finite element meshes, coarse mesh for the volume
fraction field and fine mesh for the thermoelastic
deformation field, in order to resolve the quality-time
dilemma effectively.

In this work, the mechanical strength considering
tensile and compressive stresses is analyzed for FGM
composite plates using 3-D finite element method. An
18-node solid element is selected for more accurate

modeling of material properties in the thickness direction.

In FGM layer, material properties are assumed to be
varied continuously in the thickness direction according
to a simple power law distribution. In addition, the
effective material properties are obtained according to
the linear rule of mixtures. Numerical results are
compared with those of the previous works. Furthermore,
the displacement, the tensile stress and the compressive
stress according to the FGM thickness ratio and volume
fraction distribution are analyzed, in detail.

2. Modeling of FGM Composite Plates

A FGM composite plate, composed of ceramic, FGM,
and metal layers, of length a, width b, and thickness 4 is
considered. In FGM region, material properties are
assumed to be varied in the thickness direction only. The
and metal layers are assumed to be
homogeneous and isotropic. The thickness ratios of
ceramic, metal, and FGM layers are denoted by 7., r,, and
1y, respectively, and they are expressed as

r =h//h,r‘ =I1'/h=i;n=hm/l1=(l—rr)/2

ceramic

(1
where 4, h, and A, indicate the thicknesses of ceramic,
metal and FGM layers, respectively. As the FGM
thickness ratio r, tends to 0, FGM composite plates
approach the classical ceramic-metal layered composites,
while they approach the fully FGM plates as 7, tends to 1.
The volume fractions of metal V,, and ceramic V, are
given as follows by applying a simple power law
distribution.

O=z527 V(z)=1
7 () Z,—Z "
Z. XZz8% z)=
b z,~z, 2
z, S757 V(z)=0
V.(2)=1-V,(2)
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where volume fraction index » indicates the material
variation profile through the thickness direction and is a
non-negative real number.

According to the linear rule of mixtures, the effective
material properties P,y can be obtained as following.

H,,(Z):R,,V,”(Z)ﬁ-RVI(Z) 3)

where P,, and P, represent the material properties of the
metal and ceramic, respectively.

3. 3-D Finite Element Method

A three-dimensional finite element model for thin and
thick FGM plates is developed and an 18-node solid
element is used to analyze more accurately the variation
of material properties in the thickness direction of the
system.

Considering a
equilibrium as,

three-dimensional solid body in

j SE'SdV -5W =0 (4)

where SE, S, oW and V indicate the virtual strain
vector expressed in terms of the displacement vector u,
the 2" Piola-Kirchhoff stress vector, the external virtual
work and the volume of the undeformed configuration,
respectively. The stress vector S is related to the strain
vector E through the following equations.

S=CE )
where C is the 6x6 elastic matrix of material stiffnesses,
defined in the local coordinate system. For the finite
element discretization, the displacement vector u can be
given as
(6)
where u, v and w denote the displacements in x-, y- and
z-directions. Furthermore, N and q. are the shape
function matrix and the element nodal displacement
vector, respectively. The strain vector E and the virtual
strain vector SE can be written as

E=Bq_, JE=Bdq, 7
where B is a matrix of derivatives of the shape functions.
The external virtual work &W is related to the element
nodal load vector Q. as following.

W =4q.'Q, @®)

By substituting Eqgs. (5-8) into Eq. (4), the following
equilibrium equation can be obtained.

u=[u v w]T:NqV

2.0/ [Ka -Q]=0 ©)
where the element stiffness matrix K. is expressed as
K_=B'CB (10)

After assembling over all elements, Eq. (9) becomes



Kq-Q=0 (11)
where K, q, and Q denote the global stiffness matrix, the
global nodal displacement vector, and the global nodal
load vector, respectively. Eq. (11) can be solved for q.
The stress vector can be obtained by substituting q into
Egs. (5) and (7).

4. Numerical Results and Discussions

In order to verify the performance of present code,
numerical results are compared with those of the
previous works for the case of a clamped isotropic square
plate under uniform pressure. Further, the mechanical
strength of clamped square FGM composite plates under
mechanical load is investigated. Silicon nitride (SisNy)
and stainless steel (SUS304) are chosen to be the
constituent materials of the FGM composite plates.

In numerical results, the following dimensionless
values are applied.
x=xla, y=ylb, Z=z/h, w=-wlh

& =, /E Xalh) (12)

where E,, represents Young’s modulus of metal.

4.1 Isotropic plates

To check the validity of the present result, the
maximum displacement and stress of a clamped isotropic
square plate under uniform pressure are analyzed. The
uniform pressure ¢, applied on the top surface of the
plate is expressed as

g, =~ E(hl a)’ (13)
The numerical results are compared with analytical
solutions [6]. Table 1 presents the maximum

displacement (W) and the maximum stress (G )

max max

under uniform pressure. This shows good agreement
between the present work and the previous result.

Table 1. Dimensionless maximum displacement and
stress of a clamped isotropic square plate under uniform
pressure (v=0.3, g =5).

Dimensionless Source

quantities Analytical [6 ] Present
(W), (x107) 6.8796 6.8735
(@), 1.5390 1.4975

4.2 FGM composite plates

In this section, the mechanical strength of fully
clamped square Si;N;-SUS304 FGM composite plates
subjected to mechanical load is investigated. In order to
evaluate the mechanical strength, the tensile stress and
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the compressive stress are investigated, in detail. The
sinusoidal load ¢, distributed over the top surface of the
plate is given by the expression

q,=—q E (h/a) sinzxsinzy (14)

The tensile and compressive strengths of FGM

composite plates at each point can be calculated
according to the linear rule of mixtures through

0,(z) =0,V (2)+0,V (Z)

o,@)=0,V (@)+0,V(Z) (15)
The compressive strength of a ceramic is larger than that
of a metal, on the other hand, the tensile strength of a
ceramic is smaller than that of a metal. So as to evaluate

the mechanical strength, the stress ratio o* s

introduced by using the tensile stress ratio & and the

compressive stress ratio &, as following [4].

o =0 0, c. .20
o¥*=4 (16)
g =0, lo, g. <0

In this equation, to avoid failure, the condition |c*| <l

should be fulfilled and when |a *| becomes small, the
structure gets better mechanical strength.

Fig. | presents the maximum displacement (W),

max

with variation of FGM thickness ratio and volume
fraction index. When the volume fraction index » is
increased, the displacement decreases. This is because as
the volume fraction index is increased, the content of
ceramic increases. When n<l1, the displacement increases
as the FGM thickness ratio 7, is increased. On the
contrary, when n>1, it decreases as r;is increased.
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Fig. 1. Maximum displacement of FGM composite plates
(alh=50, G =5)

The maximum tensile stress of FGM

(@)



composite plates according to FGM thickness ratio and
volume fraction index is shown in Fig. 2. In FGM
composite plates, as the volume fraction index is
increased, the tensile stress decreases. However, in fully
FGM plates (r,=1), it shows a different response. That is,
the tensile stress increases generally, as # is increased but
when #>2, the tensile stress decreases as the FGM
thickness ratio #;is increased. In all cases of #, the tensile
stresses have the smallest values when 7yis 1.
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Fig. 2. Maximum tensile stress of FGM composite
plates (a/h=50, g =5).

Fig. 3 illustrates the maximum compressive stress

|cT", . With respect to FGM thickness ratio and volume

fraction index. The responses are very similar to those of
maximum displacement. From Figs. 2-3, in overall cases,
the tensile stresses have larger values than the

compressive stresses, that is |0' *|.m =(0o,),,, - Thus, the

tensile stress is the most important factor for the
mechanical strength of the FGM composite plates under
mechanical load.

5. Conclusions

The mechanical strength considering tensile and
compressive stresses are investigated for clamped Si;Ny—
SUS304 FGM composite. The maximum displacement
and compressive stress decrease when the volume
fraction index is increased. However, the maximum
tensile stress decreases as the volume fraction index is
increased for the FGM composite plates, but it increases
and decreases for the fully FGM plates. In overall cases,
the tensile stresses have larger values than the
compressive stresses. Thus, the tensile stress is most
important value for evaluation of mechanical strength.

As a result, FGM thickness ratio and volume fraction

distribution have great effects on the mechanical strength
of the FGM composite plates.
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Fig. 3. Maximum compressive stress of FGM
composite plates (a/h=50, g =5).
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