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I. INTRODUCTION 
 
With the advancement of very-large-scale integration 

(VLSI) technology, three-dimensional integrated circuits (3D 
ICs) have generated great interest in recent years. 
Researchers have already demonstrated actual 3D IC 
implementations on silicon [1, 2]. In general, 3D ICs offer 
many design advantages over their 2D IC counterpart in 
terms of reduction in footprint area, reduction in wirelength 
resulting in switching power savings, heterogeneous 
stacking of different dies, and higher bandwidth by stacking 
of memory over logic.  

However, as with every new technology, 3D ICs come with 
new issues like high power density leading to thermal and 
power delivery issues [3, 4], modeling of 3D parasitics which 

is under research and not yet fully developed, and lack of 
CAD tools for actual 3D place and route. Another major 
difference when compared to 2D ICs is the addition of die-to-
die variations in TSV-based 3D ICs where the different dies 
are stacked together and data/clock paths run across multiple 
dies (Fig. 1). With technology nodes going down to 14 nm 
and to 7 nm in future, variation is one of the major factors that 
need to be taken care of very carefully to have a good yield. 
3D ICs introduce a new source of variation in the same circuit 
along with existing systematic and local random variation in 
2D ICs which pose new design challenges [5, 6]. The physical 
design approach needs to incorporate these new variations 
during optimization to have a good yield in terms of meeting 
performance and to prevent over design which may lead to 
higher power and longer design time. 
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Abstract 
Three-dimensional integrated circuits (3D ICs) experience die-to-die variations in addition to the already challenging within-
die variations. This adds an additional design complexity and makes variation estimation and full-chip optimization even more 
challenging. In this paper, we show that the industry standard on-chip variation (AOCV) tables cannot be applied directly to 
3D paths that are spanning multiple dies. We develop a new machine learning-based model and methodology for an accurate 
variation estimation of logic paths in 3D designs. Our model makes use of key parameters extracted from existing GDSII 3D 
IC design and sign-off simulation database. Thus, it requires no runtime overhead when compared to AOCV analysis while 
achieving an average accuracy of 90% in variation evaluation. By using our model in a full-chip variation-aware 3D IC 
physical design flow, we obtain up to 16% improvement in critical path delay under variations, which is verified with detailed 
Monte Carlo simulations. 
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Fig. 1. Addition of die-to-die variations and large TSV (approximately 20 
fF load equivalent). 
 
 

Existing techniques of on-chip variation modeling during 
physical design are well established for 2D ICs but they 
need to be developed for 3D IC designs. Use of machine 
learning-based modeling techniques has recently gained a lot 
of interest [7]. In this work, we explore non-linear 
regression as the machine learning techniques to develop a 
fast accurate variation model for two-tier 3D ICs along with 
2D ICs. The major contributions of our work are as follows: 
· We study the variation situation in 3D IC compared to 2D 

IC and the limitation of current 2D IC techniques for 
advanced on-chip variation analysis in 3D ICs. We also 
demonstrate the difference in the variation impact on 
mean delay for both 3D ICs and 2D ICs (Section II). 

· We conduct experiments to identify the various factors 
which impact the delay variation of data paths in real 
physical layouts. This is the first work to study variation 
on 3D paths extracted from actual graphic data system 
(GDS) layouts using commercial RTL-GDSII level flow 
and not just using a chain of gates. 

· We develop a fast and accurate delay variation estimation 
model for the 3D data paths in digital circuits. Our model 
is developed with non-linear regression technique and 
uses input parameters from the design database already 

available during the place and route steps (Section III). 
· We incorporate our developed model into industry quality 

tools and carry out variation-aware optimization for full-
chip 2-tier 3D IC designs. We demonstrate up to 16% 
improvement in worst critical path delay under variations. 
To the best of our knowledge, this is the first work to 
carry out full chip layout-level 3D IC variation-aware 
design and optimization (Section IV). 
We also discuss current CAD limitations involved 

followed by the conclusion in Section V. 
 
 
II. MOTIVATION 
 
A. State-of-the-Art for 2D IC 

 
The on-chip variation-aware design technique for 2D ICs 

is well established in the industry. The basic idea in 
variation-aware optimization is not reducing the variation (σ) 
itself but shifting the entire critical path delay distribution 
curve with variation to below the target clock period (Fig. 
2(a)). This way, the designer can ensure that the desired 
delay for a given critical path is satisfied by 99.7% (3σ) of 
design samples under consideration. In other words, the 
paths in the design are made much faster (compared to 
timing target) during design optimization in the 
deterministic case such that any factor slowing down the 
cells under process variations will still not result in more 
delay than the desired target for 99.7% (3σ) of samples. In 
practice, this optimization is not done by reducing the 
timing target but by intentionally derating the cell delays 
during timing optimization to meet the same timing target as 
the deterministic case. The commonly used cell derating 
techniques in sub-65nm digital designs are on-chip variation 
(OCV), advanced on-chip variation (AOCV), and 
parametric on-chip variation (POCV) [8]. In OCV, a single 
pessimistic timing derating factor is applied to all the cells 
making them slower simultaneously. The disadvantage of 
this approach is the pessimism in the timing analysis for 

 
Fig. 2. State-of-the-art advanced on-chip variation (AOCV) optimization technique. (a) Delay optimization to reduce the variation impact, (b) use of AOCV 
data in 2D ICs, and (c) limitation of AOCV data in 3D ICs. 
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deep data paths, leading to additional power due to insertion 
of more timing buffers and larger sized cells along with 
longer timing closure cycles. It was acceptable for older 
technologies because the global timing derating factor was 
not very high. But with increased variation in advanced 
technology nodes, the common derating number tends to be 
very high leading to very pessimistic results. 

Statistical analysis has shown that the random variation is 
relatively less for deeper timing paths since not all cells are 
simultaneously fast or slow [8]. AOCV (advanced OCV) 
technique is a more accurate and practical approach as it 
assigns timing derating factors to individual cells based on 
the depth and the physical span of the timing path (Fig. 
2(b)). While the former takes into account the local random 
variation, the latter models spatial variation within the die. 
These derating factors are provided by the foundry in form 
of a look-up table which has timing derating values for all 
cells for different depths and distances. POCV (parametric 
OCV) is another method where delay variations are 
modeled by addition of random variables. 

The AOCV and POCV techniques for 2D IC design and 
optimization under variation have been universally accepted 
as the most efficient method in terms of computational cost 
and design quality. In the next sub-section, we discuss the 
new challenges in 3D ICs and why these techniques are not 
directly applicable and need to be modified or expanded to be 
used in 3D IC design. 

 
B. What Is New in 3D ICs? 
 

A typical TSV based 3D IC has different dies stacked 
together. This introduces a new source of die-to-die 
variation in same design in addition to already existing 
within-die random and systematic variations. Garg and 
Marculescu [6] have studied the impact of this variation 
mathematically. For die-to-die variation in a lot, the method 
of corner analysis is generally used in 2D IC designs where 
each die is independent of another. However, for 3D IC, the 
same design has multiple dies. The die-to-die variations in 
the same design itself are not considered during the 
compilation of AOCV tables by semiconductor foundries. 
Moreover, the variation differences among dies in the same 
3D IC will also vary from sample to sample. 

Fig. 2 explains the shortcoming of currently existing 
AOCV approach for 3D ICs. Consider a data path as shown 
in Fig. 2(b) consisting of 4 cells from Q-output of a flip-flop 
to D-input of another. Using AOCV tables provided by 
foundry for that particular technology node, timing derating 
values are assigned to the various cells and then the design 
optimized. However, once the path moves from one die to 
another, the situation is different (Fig. 2(b)). The timing 
derating factors cannot be applied to the cells in a similar 
fashion as 2D IC and new factors need to be considered. The 

use of current AOCV tables in its current format will not 
give a practical picture of the variation and will affect the 
final design quality significantly. This necessitates the 
requirement of delay variation modeling for 3D paths. OCV 
approach of assigning a conservative global timing derating 
to all cells across all tiers is one solution, but going one step 
back defeats the purpose of moving into AOCV technique 
itself and such a pessimistic approach will not be fruitful for 
design quality, power and runtime. 

There have been a few works on variation mitigation 
techniques for 3D IC. Tier adaptive body biasing has been 
suggested as a post silicon tuning method to reduce clock 
and data path variability in 3D ICs [9]. Impact of 
distribution of critical paths and process variation in 3D IC 
on clock frequency has been studied in [6]. However, use of 
detailed analytical models is computationally expensive 
especially for full-chip designs with tens of thousands of 
data paths. There are few other works which have studied 
modeling of variation for speed up and for including spatial 
correlation but these works are limited to 2D ICs only [10]. 

Fig. 3(a) shows the normalized variation curves for both 
2D IC and 3D IC for a 15-inverter ring-oscillator after 1,000 
Monte Carlo simulations with 5% σ/µ of input threshold 
voltage variation. In the 3D IC ring oscillator experiment, 7 
 
 

 
Fig. 3. Variation in 15-stage ring oscillator for 1,000 Monte Carlo 
simulations under 5% VTh variation. (a) Stage-delay distribution in 2D IC 
and 3D IC with 7 INVs on die0 and 8 on die1 connected with 2 TSVs. (b) 
Relative stage-delay variation (= σ/µ) with different number of cells in die0 
and die1. 
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inverters are in die0 and the other 8 in die1 and both within-
die and die-to-die distributions are considered. The x-axis 
has been normalized to compare the relative variation (σ/µ). 
The 3D IC ring oscillator experiences lesser overall 
variation due to additional die-to-die variation which tend to 
average out over multiple dies along the path. 

We also study the impact of having different number of 
cells distributed across two dies in a 3D IC ring oscillator 
(Fig. 3(b)). The corner cases include all cells in die0 and all 
cells in die1 which are equivalent to 2D ICs. We observe 
that equal number of cells distributed in each tier reduces 
the overall impact of variation by a good extent. The curve 
is also symmetric along the center (equal cells per die) 
which means that the count of cells in each die impacts the 
relative variation. Theoretically, from a statistical point of 
view, the addition of independent die-to-die variations are 
expected to have similar effect as local random variations 
(also independent) and hence average out overall variation. 

 
C. Key Summary 

 
The key points from these background studies and 

experiments conducted so far which motivates our overall 
study and establishes the foundations of variation-aware 3D 
IC design are:  
· 3D IC variation is different from 2D IC and needs 

additional considerations. 
· Industry approach of using AOCV (or POCV) libraries is 

excellent for 2D ICs but is not a practical technique, if 
applied directly on 3D IC design. The impact of a path 
spanning multiple dies needs to be considered. 

· Independent die-to-die variations impact the delay 
variation distribution along with number of cells in each 
die. The delay variation impact of a fixed cell count in 
each die is almost the same irrespective of which die 
those cells are on. 

 
 
III. FULL-CHIP VARIATION MODELING 
 
A. Machine Learning in VLSI 

 
The use of machine learning techniques has recently 

generated great interest with such techniques applied in 
design research problems [7, 11, 12]. The basic idea of 
machine learning is to use the actual implementation of 
some process or phenomenon to train or guide a model and 
then use it to predict the same metric for new input data. 
The data used for training the model initially is called the 
training set. To test the goodness of the developed model, it 
should be tested with a completely different set called the 
testing set. The fitness value of training set is also important 
to determine whether the actual set of inputs chosen is 

highly correlated to the output to be predicted. The key 
motivation of using machine learning is to replace 
computationally expensive simulations with predictive 
models which, though not 100% accurate, are orders of 
magnitude faster. The primary way to enhance the speed of 
evaluation further is to identify the key inputs which affect 
the output the most and reduce the total number of such 
inputs. Earlier works have demonstrated models of accuracy 
varying from 70% to 98%. In particular, for 3D IC 
applications, a learning-based maximum temperature model 
is developed and used for estimating leakage power 
variation impact on temperature profile of 3D Chip- 
Multiprocessors in [11]. Chan et al. [12] proposed a 
machine-learning based methodology to estimate 3D IC 
benefits from 2D IC implementations. 

 
B. Modeling Methodology 

 
In our work, we used multivariate adaptive regression 

splines (MARS) technique to train our model using the 
training set. The working of MARS is discussed in detail in 
[13]. We use the software tool available through [14]. 
MARS is a weighted combination of linear functions with 
knots and hinges to model non-linearity and handle higher 
dimensional inputs. The general approach to use MARS for 
modeling is to have k observations with n inputs and one 
target output in the training set. The set of candidate basis 
functions (hinge functions) based on the n inputs are 
determined with knots specified at the observed values. The 
overall process includes a forward pass to try different basis 
functions to reduce the training error and a backward pass to 
fix the overfit. For each step in forward pass, MARS adds 
the basis function which reduces residual error to maximum 
extent. The coefficient of the basis function is determined by 
least squares regression lines. Backward pass and 
generalized cross validation (GCV) is used to avoid overfit, 
i.e., unnecessarily high sensitivity to inputs by having too 
many terms in the model. This may lead to erroneous 
predictions for new input sets. GCV values close to zero 
along with low residual error values indicate a good model. 

 
C. Design of Experiments 
 

In order to have a good model for variation estimation, 
we need to have a good and extensive training set from 
actual data obtained through detailed Monte Carlo 
simulations. To achieve this, we used three different 
benchmark circuits and implemented them as TSV-based 2-
tier 3D IC designs using 28 nm technology. These designs 
have both 2D and 3D data paths and therefore provide us 
with a large data set for training and testing. The design 
details of the three different benchmarks used for model 
development are shown in Table 1. The other three 



J. lnf. Commun. Converg. Eng. 14(4): 258-267, Dec. 2016 

http://doi.org/10.6109/jicce.2016.14.4.258 262

benchmarks are used later for full chip optimization. 3D IC 
partitioning and TSV planning was carried out with the 
algorithm used in [15] and the place and route for each 
individual die was done using Cadence Encounter. 

One of the key features of our work is the use of actual 
layouts to extract critical path information in the form of 
spice netlists and carry out detailed Monte Carlo simulations 
to obtain the training set. These spice netlist are extracted 
using Primetime from full layout design with wire parasitic 
information. Therefore, the actual physical parasitic of the 
data paths has also been considered in the form of R and C 
values in the detailed Monte Carlo simulations. The TSVs 
are 3.5 µm in diameter with resistance of 40 mΩ and 
capacitance of 20 fF [16]. As input variation for Monte 
Carlo analysis, we modeled within-die and die-to-die 
threshold voltage variation as independent Gaussian 
distribution functions with a relative standard deviation of 
0.05. For a given technology node in a particular foundry 
process, the relative standard deviation is the same across all 
chips fabricated using that particular technology. Therefore, 
for design optimization purpose, the relative standard 
deviation for a given technology node in a given foundry 
can be a fixed value. In fact, AOCV tables are provided by 
foundry along with the PDK and used directly by designers 
during variation-aware optimization of 2D ICs. Since, we 
had to obtain the observations for many thousands of paths 
(Table 1), we limited our Monte Carlo simulations to 1,000 
runs per path. The key objective is to demonstrate the 
modeling approach. 

Our primary focus here is on obtaining a good modeling 
technique and methodology for variation modeling in two 
tier 3D ICs. Though, we only include threshold voltage 
variation for simulations, it is important to note that our 
modeling technique using MARS will capture all relevant 
information from the training set. Therefore, any other form 
of variation can be included during development of training 
data set and its impact will be incorporated while building 
the basis functions in MARS. Moreover, multi-tier 3D IC 
variation models can also be developed with relevant 
training samples covering multi-tier 3D ICs. While it is true 

 
 

Table 1. Benchmark circuits used 

 Cells Data paths TSVs 
jpeg 400.2 K 37.68 K 1668 
aes 187.2 K 21.54 K 844 
cf-fft 275.9 K 75.56 K 180 
cf-rca 135.3 K 18.43 K 1016 
des 31.5 K 1.99 K 258 
itc99_b19 77.4 K 11.10 K 114 

Top 3 are used for model development and bottom 3 for demonstration 
of full-chip variation-aware 3D IC design. 

that there needs to be more observations in training set, it is 
important to consider that similar to AOCV characterization, 
this is a one-time process during initial model development 
for a technology, and therefore does not incur any runtime 
overhead during design optimization. 
 
D. Input Selection for the Model 

 
The major research contribution of any machine learning 

based modeling approach is to select an appropriate 
modeling methodology and more importantly to identify a 
minimal yet sufficient input set good enough to model the 
desired output. From the detailed Monte Carlo simulations 
on the thousands of paths, we generate detailed tables of 
information of each path along with the output standard 
deviation (σ) of path delay. The detailed information 
includes the actual deterministic path delay (mean delay), 
the distribution of different cell sizes (X1–X32) and the 
distribution of cells in terms of different complexity. To 
reduce the number of inputs, we categorize the complexity 
of cells in terms of their logic function. For example 
inverters and buffers fall in the simplest category, NAND, 
NOR and similar gates fall in the second category while 
flip-flops and latches fall in the most complex category. 
Each timing path starts from a flip-flop and ends in another. 
Therefore, only the size of the flip-flops are important and 
their count is redundant (=2). We also include the physical 
extent of the cells in terms of half perimeter bounding box 
of the timing path. This is a rough representation of the 
parasitic data of the entire path. It will also prove useful to 
capture spatial variation per die, if included in analysis. It is 
important to note that all of the above information is already 
available in the design database during the place and route 
process. 

To identify the relevant inputs, we divided the entire data 
set into training set (60%), validation set (10%) during 
training and an independent testing set (30%). MARS 
modeling reports the importance of all inputs in predicting 
the target output. This importance metric is basically the 
degradation of GCV when that particular input is dropped 
from modeling. The higher the degradation in GCV, the 
more important the input is for a good model. We modeled 
with the different number of input variables as discussed 
above. In addition, we modeled relative standard deviation 
(σ/µ) as well as absolute standard deviation (σ) with mean 
path delay (µ) as an additional input to model. The 
validation set is used to avoid over-fitting of data during 
training which makes the model too sensitive to minute 
changes in input variables. We then tested the developed 
model using the testing data for accuracy evaluation. From 
the different models and their accuracy values, and the 
importance of input variable, we found out that not all the 
input variables are necessary to build a good and accurate 
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model. As discussed earlier, GCV is the key metric used for 
evaluating the success of training a model. The closer it is to 
zero (with respect to actual output range), the more accurate 
the model is. While the GCV values were quite low for all 
the iterations using different number of inputs, it was 
observed that too many input variables over-fitted the 
training samples, giving bad testing results. Also too many 
inputs is not good for runtime in general during full chip 
variation estimation. The final GCV values and average 
testing error % for the different models are shown in Table 2. 
More details on the final models and accuracy are explained 
below. 

For a given path, the number of cells present in each die 
impacts the overall variation significantly. Therefore, it is 
important to include these two parameters as inputs to the 
model. It is also known that smaller cells in a given library 
(X1 and X2) suffer more from variation compared to larger 
cells. The larger cells have multiple transistors in parallel 
and therefore tend to average out the overall effect of 
variation. The other input found to be important was the half 
perimeter bounding box of the cell i.e. the physical extent of 
the timing path. The deterministic path delay was one of the 
most important factor to model the absolute σ values. We 
found that this approach of modeling absolute σ with mean 
delay as input was better than modeling relative variation 
(σ/µ). With our experiments on different set of inputs for 
training and then testing the model, we found that these 
inputs were sufficient to model the absolute standard 
deviation of the path delay distribution. 

To summarize, the 8 inputs used for variation modeling in 
2-tier 3D IC are 
· Deterministic path delay 
· 3D half perimeter bounding box (including constant TSV 

height of 30 µm). 
· Total number of cells in each die (two variables). 
· Number of minimum sized (X1) cells in each die (two 

variables). 
· Number of size X2 cells in each die (two variables). 
· For 2D IC variation modeling the number of input 

variables reduces to 5 as the different cell counts are 
limited to just one die. 

 
E. Model Development and Runtime 

 
We used MARS to generate our model from the training 

data set obtained with extensive Monte Carlo simulations. 
For all of the models including 2D IC and3D IC models, we 
used around 60% samples for training and validation and 
around 30% samples for the testing set. The final model 
consists of a set of max functions called basis functions, 
involving the input variables, certain offset values and some 
constants. These basis functions (hinges) are then added 
together with different weights and interaction levels (forming 

Table 2. Modeling results 

 
Max σ (nm) GCV Avg. error % 

Training Training Testing 
3D IC 0.173 3.34×10-23 10.30 
2D IC 0.192 3.33×10-23 7.66 

Generalized cross validation (GCV) for model development using the 
training set and the average error % using the testing set. The maximum σ 
values are provided for comparison to GCV. 
 
 
knots) to give us the final mathematical model which is very 
fast. 

Since our objective is to integrate this model to the full 
chip optimization tool, we use Tool Command Language 
(Tcl) and other helping scripts to implement this 
mathematical formulation within the design process. There 
is no additional computational expense in estimating the 
variation using our model as the input data to our model 
comes from various paths and is already available in the 
design database (since, cell-types, count, path-length, etc., 
are all readily available during place and route). While an 
extensive Monte Carlo analysis (1,000 simulations) of a 
single data path takes almost 5 minutes (=300 seconds) even 
after using 10 parallel CPUs, our fast model estimates the 
variation of all the data paths (many thousands) in a given 
design in a fraction of a second. 

If we compare the time required to develop the 
regression-based model itself, it is very similar to that 
required by foundry in building the AOCV tables where 
they have to carry out extensive spice simulations and test 
chip measurements. Therefore, our model is unique to 3D 
IC variation modeling and simultaneously good in terms of 
both development time and execution time compared to 
state-of-the-art 2D IC variation analysis and accurate Monte 
Carlo analysis respectively. For 3D ICs, there is no 
established variation modeling methodology since AOCV 
tables cannot be used directly to separate dies in same 
design (Section II-B).  
 
F. Modeling Results 

 
Fig. 4(a) shows the fitting of the model training, while 

Fig. 4(b) shows the prediction accuracy of the model when 
used for the testing set. For an ideal model, the curve would 
be a 45o straight line (x = y), with data points lying on that 
straight line. We see that the training data is very close to 
the ideal case. But the actual quality of a model is 
determined by the estimation results on the testing data and 
not the training data itself. A good match of testing data 
prediction establishes the goodness of the model. The 
testing data prediction is spread along a band with the center 
at the x=y line with an average accuracy of around 90%. 
Therefore, the accuracy in prediction using our developed 
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technique is very high. Fig. 4(c) shows the trend in 
prediction of σ for our model compared to the actual vales 
of standard deviation (σ). The samples have been arranged 
in increasing order of actual σ based on detailed Monte 
Carlo simulations. It is clear that the output of our model 
closely follows the Monte Carlo results which are obtained 
only after extensive spice simulation. The relative trend in 
path delay prediction is well maintained with our model. 

The development of model is a major part of the design 
process but it is necessary to study its use and effectiveness 
in variation-aware 3D IC physical design. Moreover, it is 
important that the developed model and variation 
optimization approach work well for any new design case 
and not the designs used for initial training and development. 
In the following section, we demonstrate the impact of our 
model in successfully improving timing under statistical 
variation in full chip 3D IC design of benchmarks which are 
completely new and independent of training benchmarks.  

 
 

IV. VARIATION-AWARE OPTIMIZATION 
 

A. Design Methodology 
 
We use commercial place and route tools to carry out full-

chip 3D IC variation-aware design. The detailed design flow 
is shown in Fig. 5. We start from a synthesized netlist and 
library and carry out partitioning and TSV planning using 
technique used in [15]. This is followed by a detailed 3D 
timing analysis including 3D parasitics to determine the 
timing constraints and boundary conditions for each die 
under the given overall timing constraints for the design. 
After detailed placement, optimization and routing for both 
dies, we carry out 3D timing analysis using Primetime. 
Primetime is used for more accurate 3D timing analysis 
including the TSVs parasitic information and the 3D 
connections. 

 

 
Fig. 5. Variation-aware 3D IC design optimization flow using our 
variation model. 

 
 
We assume ideal clock and ignore Clock Tree Synthesis 

in our current work as clock path variation is another 
important study in itself. Based on the deterministic timing 
results after static timing analysis, we use our model to 
evaluate σ of all the timing paths. We then evaluate the ratio 
(µ + 3σ)/t where µ is the delay of the path, σ is the estimated 
standard deviation using our model and t is the target clock 
period of the design under consideration. If this ratio is 
greater than 1, it violates the timing requirement under 
statistical variations. While calculating this ratio, we use the 
actual timing target of design and not delay of respective 
paths. This helps us to avoid over optimization of paths 
which do not violate the timing constraint under variations. 
Then we assign timing derating factors equal to 1 + 3σ/µ for 
each cell in the violating path. If a cell is a part of multiple 
paths, the worst derating calculated for that cell is used. Our 

 
Fig. 4. 3D IC variation modeling results using our modeling technique and chosen input variables.  
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model uses input parameters which are already known to 
the place and route tool (Encounter) and therefore has no 
runtime overhead for extracting information to predict the σ 
values. After assigning the derating values to the cells, we 
carry out incremental optimization on the design followed 
by detailed routing. Incremental optimization is much faster 
because it optimizes the newly violated paths only. Then we 
extract the spice netlist with parasitic information for the 
worst 100 critical paths of the design and carry out detailed 
Monte Carlo analysis to compare the efficiency of 
optimization using our approach.  

 
B. 3D IC Design Optimization Results 

 
Table 3 shows the details of the optimization results for 

three benchmarks implemented as 2-tier 3D IC. These 
benchmarks are completely different from the ones used for 
developing the model and therefore give more credibility to 
our modeling technique in evaluating variation and 
optimizing the design under variation. We use power delay 
product (PDP) for fair comparison of power at the 
respective critical path delays. In general, designs at 
nominal operating conditions run fast and have lower 
relative variation (around 10%). Our optimization approach 
improves the worst path delay under variation by 12% for 
the cf_rca benchmark, 6% for the des benchmark and 16% 
for the itc99_b19 benchmark. The table also shows the 
change in count of different sizes of cells and the overall 
PDP change due to additional timing optimization carried 
out on the data paths. 

Fig. 6 shows the effectiveness of our algorithm in 
improving the timing of most critical paths of the cf_rca 
design. The paths are arranged in decreasing order of 
worst delay under variation and the corresponding red dots 
show the worst delay under variation after full-chip 
optimization. The worst paths are optimized more due to 
higher derating factor assignment, therefore, further 
proving the effectiveness of our model in estimating the 

variation with sufficient accuracy. These values are 
compared after Monte Carlo simulations. Fig. 7 shows the 
distribution of top critical paths in the cf_rca design before 
and after optimization in layout form. Red paths indicate 
longer delay values while blue is for low delay values 
under variation. It is clear from the figure that the (µ + 3σ) 
of all the paths are reduced after adopting our model for 
full chip optimization. 

Our optimization (similar to AOCV optimization) tries 
to optimize the timing critical paths to meet stricter timing 
constraints and does not target reduction in actual variation 
(σ). Since the tool prioritizes optimization of the most 
critical paths based on the assigned derating factors, some 
of the less critical paths may be affected in terms of 
increase in variation due to use of smaller sized cells. 
These paths may still satisfy the timing constraint with the 
low derating factors assigned to them but may end up 
having larger delay spread than before. This issue is easily 
fixed by using a few iterations of incremental optimization 
as the second iteration will give higher optimization 
priority to these paths. 

 
 

 
Fig. 6. Worst µ + 3σ values before and after the optimization for cf_rca 
benchmark (data for 40 worst paths, see Fig. 7). 

Table 3. Full-chip variation-aware optimization for 2-tier 3D ICs 

 
Cells (×1000) Wirelength 

(m) 
Worst path delay (ns) 

(μ+3σ)worst 
Power-delay-product (pJ) 

X1 X2 X4-X8 X16-X32 Total Dynamic Leakage Total 
cf_rca           

Default 47.9 73.0 13.6 0 134.6 0.888 0.9445 28.86 1.82 30.68 
Optimized 38.9 73.0 23.5 0.062 135.5 0.897 0.8286 (-12%) 28.99 1.82 30.81 

des           
Default 12.5 13.2 4.4 0 30.1 0.165 0.8341 10.51 0.34 10.85 
Optimized 5.9 12.9 11.3 0.132 30.2 0.166 0.7886 (-6%) 10.52 0.35 10.87 

Itc99_b19           
Default 20.0 52.4 4.9 0.001 77.2 0.165 3.45 15.18 3.56 18.74 
Optimized 17.7 52.3 7.3 0.078 77.4 0.166 2.91 (-16%) 15.24 3.59 18.83 
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C. Advantages and CAD Limitations 
 
We demonstrated that our model is quite effective in 

reducing the worst path delay under variations for actual 
GDSII level 3D IC designs without any power overhead. 
Tightening clock constraints will help in meeting timing 
under variation, but the penalty in terms of buffers and cell 
up-sizing will be huge. AOCV tables, in their current format, 
are not suitable for 3D ICs. Our model is developed using 
machine learning based regression techniques, and is a very 
simple addition of various basis functions involving the 
different input parameters. Therefore, it is extremely fast 
and is easily integrated into the design tools themselves. The 
accuracy, though not 100%, is quite reasonable and 
assigning path specific derating factors helps us avoid over 
design and saves additional power dissipation. To be able to 
get more accuracy, we need to have much larger database 
for training which, as a matter of fact, is available to the 
foundries since they use this same database for building 
AOCV tables.  

One important limitation in our work is that we could not 
modify the internal algorithms of the commercial tools to 
include our model inside their timing optimization engine 
and therefore, had to go back and forth outside of the 
optimization process to evaluate delay variation and then 
carry out incremental optimization. The use of commercial-
grade tools is important to maintain design quality and 
runtime. Moreover, there are no direct 3D IC place and 
route tools of commercial quality and our resources were 
limited in that respect. However, given the fact that 3D IC is 
gaining more momentum, it is imperative to develop CAD 
tools for robust and reliable 3D IC designs and we believe 
that our machine learning technique of developing variation 
estimation models is a good contribution in this process. 

 
 

V. CONCLUSION 
   

We studied the new issues and challenges of variation 
modeling in 3D IC designs and developed a fast variation 

estimation model using non-linear regression. Variation is a 
major concern in modern technology nodes and needs to be 
addressed for all kinds of design techniques including 3D 
ICs, where the problem is unique. During model 
development, we discussed the various factors which impact 
path delay variations in real GDSII level circuits. Our 
modeling technique is applicable to both 2D IC and 3D IC 
and is unique to 3D paths spanning multiple dies. We 
demonstrated the accuracy of our model using completely 
independent set of sample points for testing. Moreover, we 
demonstrated the effectiveness of our developed model on 
completely different benchmarks. By assigning cell specific 
timing derating factors based on variation estimation with 
our model, we achieved significant improvement in the 
critical path delay distribution with minimal power overhead. 
Our future work is focused on variation modeling for highly 
sensitive low voltage circuits and the exploration of other 
machine learning models to further reduce the error in 
variation estimation. 
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