• Title/Summary/Keyword: variance function

Search Result 865, Processing Time 0.022 seconds

Testing the Existence of a Discontinuity Point in the Variance Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.707-716
    • /
    • 2006
  • When the regression function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better propose a test for the existence of a discontinuity point with the regression function rather than the variance function. In this paper we consider that the variance function only has a discontinuity point. We propose a nonparametric test for the existence of a discontinuity point with the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. The proposed method is based on the asymptotic distribution of the estimated jump size.

  • PDF

Variance function estimation with LS-SVM for replicated data

  • Shim, Joo-Yong;Park, Hye-Jung;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.925-931
    • /
    • 2009
  • In this paper we propose a variance function estimation method for replicated data based on averages of squared residuals obtained from estimated mean function by the least squares support vector machine. Newton-Raphson method is used to obtain associated parameter vector for the variance function estimation. Furthermore, the cross validation functions are introduced to select the hyper-parameters which affect the performance of the proposed estimation method. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF

Cusum Control Chart for Monitoring Process Variance (공정분산 관리를 위한 누적합 관리도)

  • Lee, Yoon-Dong;Kim, Sang-Ik
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.149-155
    • /
    • 2005
  • Cusum control chart is used for the purpose of controling the process mean. We consider the problem related to cusum chart for controling process variance. Previous researches have considered the same problem. The main difficulty shown in the related researches was to derive the ARL function which characterizes the properties of the chart. Sample variance, differently with sample mean, follows chi-squared type distribution, even when the quality characteristics are assumed to be normally distributed. The ARL function of cusum is described by a type of integral equation. Since the solution of the integral equation for non-normal distribution is not known well, people used simulation method instead of solving the integral equation directly, or approximation method by taking logarithm of the sample variance. Recently a new method to solve the integral equation for Erlang distribution was published. Here we consider the steps to apply the solution to the problem of controling process variance.

Variance Reductin via Adaptive Control Variates(ACV) (Variance Reduction via Adaptive Control Variates (ACV))

  • Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.91-106
    • /
    • 1996
  • Control Variate (CV) is very useful technique for variance reduction in a wide class of queueing network simulations. However, the loss in variance reduction caused by the estimation of the optimum control coefficients is an increasing function of the number of control variables. Therefore, in some situations, it is required to select an optimal set of control variables to maximize the variance reduction . In this paper, we develop the Adaptive Control Variates (ACV) method which selects an optimal set of control variates during the simulation adatively. ACV is useful to maximize the simulation efficiency when we need iterated simulations to find an optimal solution. One such an example is the Simulated Annealing (SA) because, in SA algorithm, we have to repeat in calculating the objective function values at each temperature, The ACV can also be applied to the queueing network optimization problems to find an optimal input parameters (such as service rates) to maximize the throughput rate with a certain cost constraint.

  • PDF

Cusum control chart for monitoring process variance (공정분산 관리를 위한 누적합 관리도)

  • Lee, Yoon-Dong;Kim, Sang-Ik
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.135-141
    • /
    • 2006
  • Cusum control chart is used for the purpose of controling the process mean. We consider the problem related to cusum chart for controling process variance. Previous researches have considered the same problem. The main difficulty shown in the related researches was to derive the ARL function which characterizes the properties of the chart. Sample variance, differently with sample mean, follows chi-squared type distribution, even when the quality characteristics are assumed to be normally distributed. The ARL function of cusum is described by a type of integral equation. Since the solution of the integral equation for non-normal distribution is not known well, people used simulation method instead of solving the integral equation directly, or approximation method by taking logarithm of the sample variance. Recently a new method to solve the integral equation for Erlang distribution was published. Here we consider the steps to apply the solution to the problem of controling process variance.

  • PDF

Defect classification of refrigerant compressor using variance estimation of the transfer function between pressure pulsation and shell acceleration

  • Kim, Yeon-Woo;Jeong, Weui-Bong
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.255-264
    • /
    • 2020
  • This paper deals with a defect classification technique that considers the structural characteristics of a refrigerant compressor. First, the pressure pulsation of the refrigerant flowing in the suction pipe of a normal compressor was measured at the same time as the acceleration of the shell surface, and then the transfer function between the two signals was estimated. Next, the frequency-weighted acceleration signals of the defect classification target compressors were generated using the estimated transfer function. The estimation of the variance of the transfer function is presented to formulate the frequency-weighted acceleration signals. The estimated frequency-weighted accelerations were applied to defect classification using frequency-domain features. Experiments were performed using commercial compressors to verify the technique. The results confirmed that it is possible to perform an effective defect classification of the refrigerant compressor by the shell surface acceleration of the compressor. The proposed method could make it possible to improve the total inspection performance for compressors in a mass-production line.

Comparison study on kernel type estimators of discontinuous log-variance (불연속 로그분산함수의 커널추정량들의 비교 연구)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.87-95
    • /
    • 2014
  • In the regression model, Kang and Huh (2006) studied the estimation of the discontinuous variance function using the Nadaraya-Watson estimator with the squared residuals. The local linear estimator of the log-variance function, which may have the whole real number, was proposed by Huh (2013) based on the kernel weighted local-likelihood of the ${\chi}^2$-distribution. Chen et al. (2009) estimated the continuous variance function using the local linear fit with the log-squared residuals. In this paper, the estimator of the discontinuous log-variance function itself or its derivative using Chen et al. (2009)'s estimator. Numerical works investigate the performances of the estimators with simulated examples.

Analysis of Variance for Using Common Random Numbers When Optimizing a System by Simulation and RSM (시뮬레이션과 RSM을 이용한 시스템 최적화 과정에서 공통난수 활용에 따른 분산 분석)

  • 박진원
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.4
    • /
    • pp.41-50
    • /
    • 2001
  • When optimizing a complex system by determining the optimum condition of the system parameters of interest, we often employ the process of estimating the unknown objective function, which is assumed to be a second order spline function. In doing so, we normally use common random numbers for different set of the controllable factors resulting in more accurate parameter estimation for the objective function. In this paper, we will show some mathematical result for the analysis of variance when using common random numbers in terms of the regression error, the residual error and the pure error terms. In fact, if we can realize the special structure of the covariance matrix of the error terms, we can use the result of analysis of variance for the uncorrelated experiments only by applying minor changes.

  • PDF

Estimation of Interval Censored Regression Spline Model with Variance Function

  • Joo, Yong-Sung;Lee, Keun-Baik;Jung, Hyeng-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1247-1253
    • /
    • 2008
  • In this paper, we propose a interval censored regression spline model with a variance function (non-constant variance that depends on a predictor). Simulation studies show our estimates from MCECM algorithm are consistent, but biased when the sample size is small because of boundary effects. Also, we examined how the distribution of $x_i$ affects the converging speed of these consistent estimates.

  • PDF

Asymptotic Distribution of Sample Autocorrelation Function for the First-order Bilinear Time Series Model

  • Kim, Won-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 1990
  • For the first-order bilinear time series model $X_t = aX_{t-1} + e_i + be_{t-1}X_{t-1}$ where ${e_i}$ is a sequence of independent normal random variables with mean 0 and variance $\sigma^2$, the asymptotic distribution of sample autocarrelation function is obtained and shown to follow a normal distribution. The variance of the asymptotic distribution is of a complicated form and hence a bootstrap estimate of the variance is proposed for large sample inference. This result can be used to distinguish between different bilinear models.

  • PDF