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Analysis of Variance for Using Common Random Numbers
When Optimizing a System by Simulation and RSM

uhxl gl

Jin-Won Park

Abstract

When optimizing a complex system by determining the optimum condition of the
system parameters of interest, we often employ the process of estimating the unknown
objective function, which is assumed to be a second order spline function. In doing
so, we normally use common random numbers for different set of the controllable
factors resulting in more accurate parameter estimation for the objective function. In
this paper, we will show some mathematical result for the analysis of variance when
using common random numbers in terms of the regression error, the residual error and
the pure error terms. In fact, if we can realize the special structure of the covariance
matrix of the error terms, we can use the result of analysis of variance for the
uncorrelated experiments only by applying minor changes.
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1. Introduction

Simulation is a modeling or an analyzing
tool for complex systems. It involves the
construction of a descriptive model that
explains the operations of a system, in order
to quantitatively analyze the relationship
between the system components. Simulation
also involves sampling the experiments
based on sound statistical theory, since the
behavior of some system components is
assumed to be random.

Many different approaches have been
developed for finding an optimum condition
of a system with random behavior using
simulation experiments. A good discussion
on the different optimization methods using
the simulation experiments can be found on
Park and Leef2] and Yang and Leel5].
Among the several optimization methods,
we are focusing on the Response Surface
Methodology(RSMD[7,10,15,17,19]. RSM is
defined as the functional approach where we
are approximating the system behavior of
interest as a second order spline function
with respect to the controllable factors. The
controllable factors are often called as the
decision variables. This approach was first
adopted in simulation optimization problems
by Smith[19] and was later extended by
Daugherty & Turnquist[10], and Park[3,17].

In the process of estimating the objective
function, which is unknown but is assumed
to be a second order spline function, we use
common random numbers for different set
of the decision variables, resulting in more
accurate parameter estimation for the
objective function. Obviously, more accurate
parameter estimation will give us more
accurate optimum solution to the system of

interest.

Early research on simulation experiments
used common random numbers for comparing
the alternatives. By using common random
numbers we can compare the alternatives
by performing simulation experiments under
almost identical conditions so that we can
obtain relative results, that is the difference
of responses between alternatives, efficiently.
Conway[8] discussed the importance of
common random numbers when we perform
simulation  experiments for comparing
alternatives. Fishman[12] adopted the strategy
and investigated the theoretical background
of it when he tried to compare the mean
responses of the alternatives through
simulation experiments.

The strategy of using common numbers
looked promising in reducing the variance of
the estimated response function in the study
by Cooley and Houck[9], Tew and Wilson
[20], Schruben and Margolin [18] and Nozan,
et. al, [16]. However, a few research has
been devoted to use common random
numbers in order to reduce the variance of
the parameter estimator for the unknown
objective function in RSMI[9,17,18,20], since
it is complicated to analyze the effect of
using common random numbers.

The primary goal of this paper is to
analyze the impact of wusing common
random numbers and show some
mathematical result for the analysis of
variance(ANOVA) in terms of the
regression error, the residual error and the
pure error terms. The analysis of variance
is the key for the regression significance
test and the lack of fit test in the process
of estimating the response function with
RSM type simulation optimization.
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This paper is organized as follows. In
section II, after the introduction in this
section, we will give general
discussion on the simulation optimization
problem using correlated experiments with
RSM, which was described in Park[3,17],
Kwonl1] and ‘Yang and Leel[5]. The major
result of using common random numbers in
the process of analysis of variance is given
in section III. Finally, éome comments and
the possible future research topics will be
included in section IV. Also, the proofs for
the major results discussed in Section I
will be explained in detail in the Appendix.

some

II. Correlated Simulation Experiments

The RSM approach for simulation
optimization problems begins with performing
a set of simulation experiments over the
controllable  factors, or
equivalently the decision variables. The
batch means or the expected values of

settings of

several numbers of repetitive simulation
experimental results of the system
performance measure of interest are

assumed to be unimodal in terms of the
decision variables of the system. Then, we
approximate the unknown expected value of
the system performance measure as a
second order linear function.

The general description and the formal
setting of the RSM process for the

simulation optimization  problem = were

described in detail by Park[3,4,17].

Consider the general linear model of
Y=Xb+c¢. (1)

Here in model (1), Y is the vector of =

simulation outputs consisting of Y;, i=1,2,.
..,n. Here, Y, is computed as the
average of m batch means Y, Ya, ..., Y;

at design point i. Also, b is the parameter

vector of by by..,be, bu,..,be—1 and

€ is the n dimensional observation error

vector.
1 xy %y Xp—1,1
, ]. X122 X9 ... Xp—1,2
X=1. . . . 2)
1 Xin Xom Xp—1,n

is an experimental design matrix augmented
by the vector of 1, x; ¢,7=1,2,..., %, i{j,

and x%, j=1,2,...,k where k is the
number of the decision variables, p is the
number of parameters in the model.

In the wusual regression analysis, we
perform the regression - significance test
using sum of squares. The
regression significance test is used to tell
whether the regression equation is actually
meaningful. We also performs the lack of fit
test using residual sum of square. The lack
of fit test tells whether the fitted model is
properly describe the regression model.

Table 1 depicts the usual ANOVA table
with unweighted regression analysis with
independent simulation outputs.

In Table 1, T is X3 (Y;—Y)®
Y; is the j-th simulation batch
Y;: is
the average of Y; j=1,2,...,m batches.

regression

where

mean on the i-th design point, and
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Table 1. ANOVA table for unweighted

regression
degree
source of sum of sqaures
freedom
regression | p-I B XY-nY?
residual n-p YY-8XY
total n-1 YY—nY?
pure error | (m-1)n T/m

Suppose that we can correlate Y; and

Y. through performing simulation

experiments at design points x' and x™
using common random numbers. Then we
will perform weighted regression for

estimating & in
assuming that the simulation output vector
of Y is correlated with the covariance
o *2R. Here, o¢** is the
estimated common variance of Y; and Y,,
and R is the estimated
coefficient matrix between Y, and Y,, I, m

=1,2,...,n. .
The following is the normal weighted

regression model (1),

matrix of

correlation

regression process to estimate & in model
(1). First, compute R, Second, compute
P l=wWVAW, where P"'P"'=R"! and
W is the eigenvector of R Also, A is
the diagonal matrix
eigenvalues of R™!. Third, transform X '
and Y to @ =P 'X, Z=P'Y. Finally,
estimate b by 8 =(QQ’ QZ

Table 2 shows the usual ANOVA table

consisting of the

for the weighted regression analysis[11].

Table 2. ANOVA table for weighted

regression
degree
source of sum of sqaures
freedom
regression| p-1 A 'Q'Z - n?
residual n-p ZZ-8QZ
total n-1I ZZ—n?

pure error| (m-In | 3% ST (Y= Y)%/m

II. The ANOVA Table for Special
Covariance Structure using Common
Random Numbers

Suppose that we can correlate Y, and

Y, through simulation experiments at

design points x' and x™ using common
random numbers for each design point.
Also, let us assume that, as a result of
using random numbers, the
covariance matrix V of the error terms

common

e=(e;,€9,...,6,) is found to be a
special form with the diagonal elements
being o¢ 2 and all the off-diagonal elements

being o a? 0<p<l.

If we formally describe the special
structure of V, then we can write as
V=0%1—po),+c%0], 0<p<1,

where o 2p is the common correlation

coefficient for ¢, and ¢ ,, #Fm,
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ci=Varle), I1=1,2,..,n, 1I,is an
® X »n identity matrix, and J, is n by n
matrix of all the elements being 1. (3)

Then, the best estimator for b is known as
B=(XX)"'XY (4)
and the covariance matrix as

Cov(B)=(XV X))} (5)
or (XV X)) l=(1—p)c?(XX)™' (6

except element (1,1) which is for 8.

Note that equations (4) and (5) are from
Lewis and Odeli{13]. Equation (6) was
proved by Schruben and Margolin[18] when

we have design matrix X i being orthogonally
blockable. However, Park[4] proved that
equation(6) is still valid when design matrix

X is not orthogonally blockable but is of
general form.

As we described in section II, we may
perform the regression test and the lack of
fit test using the terms in Table 2 of
weighted regression for this correlated
simulation outputs. However, it is possible
to employ the usual regression test and the
lack of fit test with the terms in ANOVA
table for uncorrelated simulation outputs
with minor change, if the covariance
structure can be assumed as a special one
as equation(3). Table 3 shows the ANOVA
table when the covariance structure V with
equation(3) can be assumed. The individual
terms in Table 3 will be proved in the
Appendix.

Table 3. ANOVA table for covariance
structure of V in equation (3)

degree
source of
freedom

sum of sqgaures

regression| p-1 (BX Y- n?)/ (1—0)

(YY-B'XD/(1—0)

residual n-p

total n-1 (YY—2uVD/(1— o)

pure error| (m-1)n T/m

In Table 3, T is defined same as that
of Table 2. Table 3 shows that the terms
in the ANOVA table with weighted
regression for this special case can be
derived from the results with unweighted
regression, when we can reasonably assume
that the “simulation outputs are specially
correlated. In other words, we can still use
the ANOVA table with unweighted
regression by making minor adjustments.
We also assumes that o, the common
correlation coefficient, is between 0 and 1,
which were shown in many real
situations[17,18].

If p is close to 1, where the simulation
outputs at different experimental points are
closely correlated, then the sum of square
terms for the regression and for the
residual become very large. In this case, we
can test the significance and the lack of fit
for the regression equation more easily. On
the other hand, if o is close to O, then it
is not much beneficial to use common
random numbers in terms of the regression
significance test and the lack of fit test.

Apparently, it is critical to test if we
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have realized the covariance matrix for the

error terms &€ not being significantly departed
from a special structure V as in equation
(3). The test procedure can be found in

Morrison[14].

IV. Conclusion and Further Research
Topic ‘

We have presented the impact of using
common random numbers for the regression
test and the lack of fit test in the process
of estimating the parameters of the
objective function in RSM. The major result
obtained in section III revealed that if we
use common random numbers for estimating
the parameters of the unknown objective
function, we can still have the sum of
square terms with a minor modification
from the results of uncorrelated simulation

experiments.
The result obtained in this paper is very
helpful to the simulation experimenters

using common random numbers, since they
can still utilize the sum of square terms for
independent simulation experiments.

Finally, it may be interesting to
investigate the impact of using antithetic
random numbers in the process of RSM
approach for optimization
problems. Not many researches have been
done for this topic yet.

simulation

Appendix

Let Y+=[ Yl], v Ylm, YZI, sy Ynlv LN Ynm]
be the vector of individual batch means,

where Y, is the r-th batch mean at

design point 7 in experimental design

matrix of equation(2). Also, define Y be
the vector of # simulation. outputs
consisting of Y;, 7=1,2,..,n. Here, Y; is

computed as the average of m batch means
Yi, Yo, ...

Suppose that we perform weighted
regression for the model defined in equation

, Y., at design point i.

(1) where X is defined as equation (2)
and & is defined as the parameter vector of
bO,bl, ey bk, bu,. . bk—l,k- Assume that the

covariance matrix V is the form of equation
(3).

Consider the transformation for performing
weighted regression, Q= P_IX', Z=ply,
Zt'=(P'®I,)Y", where PP=V, and

& is the notation for Kronecker product.
Theorem:

The sum of square terms resulting from
weighted regression are

(1) Regression sum of square:

SSk = 2 (Z; “‘2)2
=1 (A1)
= 2(Yi- Do)
with p—1 d.o.f.(degree of freedom)
(2) Residual sum of square:
SS, =ZZ—-8'QZ
(A2)

=(YY-Y'"'V/1Q—0p)
with n—p d.of.

(3) Error sum of square:
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SSe=(U/m 2 2 (Y= Y)' (A3
with #(m—1) do.f., and

E(SSp) =2

Note:
V'=Xp8, Z=pP 'Y

T=(/n B ¥, Z-Wn B2

Proof:
(1) Regression sum of square

Without loss of generality, let us assume
that o2=1. Since V is symmetric, so are
V!and P!, where V'i=p 1p7L

Let V '=(a—g),+gl, and

a=1+(n=2)0)/((1+(n—-1)p)1—p))
g=- p/((1+(n_—1)p)/(1— 0)), e+0.(A4)

from the Appendix in Park[4].

Since v! has the form  of
(a—g)I,+gJ, P! should have the form
of (¢c—ad)I,+d],.

Here, I, and [, is defined in equation (3).
Solving for ¢ and d, noting that

F+(n—1)d*=a
(A5)
2cd+ (n—2)d=g

we have

c= (1—-2"HA+(n—1)p)/ K"

+ (/[ (1— p)/H]*
d= (—1/n)[(A+(n=10)/K*

+ 1/ (1— p)/H)*
where h=1+(n+2)o —(n—1)p0 2
Now,

SSx = 2(Zi- 2

(A6)

(A7)

= Zl[(c—d)Y:+d(YI+...+ Y;)
—(c—d) Y— ndY)?
= Zlc—Yi—(c=d) T’

=(c—d)? B(Yi- T
. (A8)

- 2(i-DH(1- )
Note:
Z =Q/n B2

=1/ Bl(c= DYt dYVi+...+T,)]
=(1/n)Xc—dnY+ (1/n)dn’Y
=(c—d) Y+ ndY

d (Yi+...+Y)=ndY

(2) Residual sum of square

SS, =Z7Z-8'Qz
=Y Vv'ivy-8xP Py (A9)
=Y V'y-vv'y

The first term becomes
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Y V=Y 191 Lp11. v

== ZIY," [aYi+g(Y1+...+ Yn_ Yt)]

— 2 (aY.Yi—gYiY)
+e(Y1+ ...+ Y)Y +...+Y,)
—(a—Y Y—n¥ o /)Y’
=(1-0)7'YY=-( o /DY (A

where % is given in eguation (A7).
Similarly, the second term becomes

YV Y=(1—0) 'V Y—(nlo/h) Y2

(A11)
Finally, we have
SS,=(Y' Y=Y " V/(1-»p) (A12)
(3) Error sum of square
We know that
3 22— 20 (m(m—1) (A1)

is the best estimator for o 2.

Consider
121 Zl(zi’—zi)z
=(Z'—2Z21) (Z* - ZR1)
=[(P'®DY" — (PRI Y]

- [(PT'QD YT — (PT'RD(YR1)]
=Y (P'®D (P '@DY"

— (YR (P'@D (P '@nY"

- YT (P'®D (P'QD(YR1)

+(YQL) (PTIQN(P RN YR1)
=Y " (VDY — (YL (VIQDHY"

- YT (V'®D(YR1)

+(Y®D (VRN YR1)
=Y (vV1in(Yt— YRl

— (YR (V' IQN(Y — YRI1)
=Y - YR (VN Y’ — ¥Y®1)

—a 3 3 (V- ¥

+e 3 B 2 (Y YXY,—T)
i*j
(A14)
Note:
I: m x m unit matrix
1: 1 x m matrix of 1’s.
We know that

(om(m—1)T'E [ 3, 2 (Zy—2)%]

~La/(wm(m—D)E [ 2, 2(¥y~ ¥)?]
+g(n—1/(nm(m—1))]1 -

ELE 2 2V YXV—Y)l=o

17
(A15)

where a, g, k are defined in equation(A4)
and (A7).
Suppose

[im(m=1) 17 E [ 2, Z(¥p— Y)"]

= %%42
(A16)
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then,
(om (m=)TE [ Z, 23(Z—2)%)

=aritgn—1)p %= ¢ 2#¢?

(A17)
Thus, if and only if
[m(m=1) 17 E[ 2 2(Y,— ¥)*]
= ¢ 2,
[am(m—1) 17V E [ &, 23(Z—2)"]
=0 2.
(A18)

References

{1] Kwon, C.M., “Optimization of Queueing
Network by Perturbation Analysis,” J. of
the Korea Society for Simulation, Vol.9,
No.2 (2000), pp.89-102.

[2] Park, K.J. and Y.H. Lee, “A Method for
Design of Discrete Variable Stochastic
Systems using Simulation,” J. of the
Korea Society for Simulation, Vol8,
No0.3(1999), pp.1-16.(in Korean)

(3] Park, J.W. “Optimization Techniques
using Simulation Experiments” Communi
—-cations of the Korea Information
Science Society, Vol.8, No.1(1990), pp.37
~-47(in Korean).

[4] Park, J.W., “A Benefit Analysis of Using
Common Random  Numbers When
Optimizing a System by Simulation
Experiments,” ]J. of the Korea Society
for Simulation, Vol.8, No.4(2000), pp.1-10.

[5] Yang, B.H. and Y.H. Lee, “Simulation
Optimization Methods with Application
to Machining Process,” J. of the Korea
Society for Simulation, Vol.3, No.2(1994),

pp.57-67.(in Korean)

[6] Biles, W.E. and ].J. Swain, Optimization
and Industrial Experimentation, Wiley
Interscien— ce, New York, 1980.

{71 Box, GEP. and J.S. Hunter, Multifactor

Experimental Design for Exploring
Response Surfaces, Annals of
Mathematical ~ Statistics, Vol.28(1957),
pp.195-241.

[8] Conway, B.W., Some Tactical Problems
in Digital Simulation, Management

Science, Vol.10(1863), No.l, pp.47-61.

{91 Cooley, B.J. and E.C. Houck, A Variance
Reduction Strategy for RSM Simulation
Studies, Decision Sciences, Vol.13(1982),
pp.303-321.

[10] Daughety, AF. and M.A. Turnquist,
Budget Constrained Optimization of
Simulation Models via Estimation of
Their Response Surfaces, Operations
Research, Vol.29, No.3(1981), pp.485-500.

[11] Draper, NR. and H. Smith, "Applied
Regression Analysis,” 2nd ed., John
Wiley and Sons, N.Y., 1981.

[12] Fishman, G.S., Principles of Discrete
Event Simulation, John Wiley and Sons,
N.Y., 1978.

[13] Lewis, T.O. and P.L. Odell, Estimation
in Linear Models, Prentice-Hall Inc.,
Englewood Cliff, NJ, 1971.

[14] Morrison, D.F., Multivaiate Statistical
Methods, 2nd ed. McGraw-Hill, N.Y,,
1976.

[15] Myers, R., Response Surface Methodo
-logy, Allyn-Bacon, Boston, 1971.

[16] Nozari, A., SF. Amold, and C.D.

Pegden, Statistical Analysis under
Schruben and Margolin Correlation
Induction  Strategy, IMSE Working

Paper, pp.85-134, Penn. State Univ., 1985.



50

stmAlEafolMEE =2X H103 M4Z, 2001. 12

[17]1 Park, J.W., Simulation Optimization

with Discrete Decision Variables and a
Single Linear Constraint, Ph.D.
Dissertation, Ohio State Univ., Columbus,
Ohio, 1987.

[18] Schruben, L.W. and B.H. Margolin,

Pseudo random Number Assignment in
Statistically Designed Simulation and
Distribution Sampling Experiments, J. of
Amer. Stat. Assoc., Vol.73, No.363(1978),

utxl 2f

@ A=z @

pp.504-525.

[19] Smith, D.E., An Empirical Investigation

of Optimum Seeking in the Computer
Simulation Situation, Operations Research,
Vol.21, No.2 (1973), pp.475-497.

[20] Tew, J.D. and J.R. Wilson, Validation

of Correlation Induction Strategies for
Simulation Experiments, Proc. of the
1985 Winter Simulation Conference(1985),
pp-190-195.

1975 Agistm FFUe HQTe ot
1987 W% 2atol oY PN 2R B} uka)
1977~1980 37127 AKD) A7-¢
1987~1988 nl= G =edsn 24

1983~1999 #=AAFAATHETRD AP+

1999~2000 gAtoigtnl w4

2000~@A Fojdistu A A7 HFEH TSR Ay

#AEok Computer System Simulation, 97/ A, AFE|A 28 AA



