• 제목/요약/키워드: vapor-deposition

검색결과 2,864건 처리시간 0.04초

증착온도와 RF Power가 TiCN박막의 플라즈마 화학증착에 미치는 영향 (The Effects of Deposition Temperature and RF Power on the Plasma Assisted Chemical Vapor Deposition of TiCN Films)

  • 김시범;김광호;김상호;천성순
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.323-330
    • /
    • 1989
  • Wear restance titanium carbonitride (TiCN) films were deposited on the SKH9 tool steels and WC-Co cutting tools by plasma assisted chemical vapor deposition (PACVD) using a gaseous mixture of TiCl4, CH4, N2, H2 and Ar. The effects of the deposition temperature and RF(Radio Frequency) power on the deposition rate, chlorine content and crystallinity of the deposited layer were studied. The experimental results showed that the stable and adherent films could be obtained above the deposition temperature of 47$0^{\circ}C$ and maximum deposition rate was obtained at 485$^{\circ}C$. The deposition rate was much affected by RF power and maximum at 40W. The crystallinity of the deposited layer was improved with increasing the deposition temperature and RF power. The TiCN films deposited by PACVD contained much chlorine. The chlorine content in the TiCN films was affected by deposition conditions and decreased with improving the crystallinity of the deposited layer. The deposited TiCN films deposited at the deposition temperature of 52$0^{\circ}C$ and RF power of 40W had an uniform surface with very fine grains of about 500$\AA$ size. The microhardness of the deposited layer was 2,300Kg/$\textrm{mm}^2$.

  • PDF

Water - Assisted Efficient Growth of Multi-walled Carbon Nanotubes by Thermal Chemical Vapor Deposition

  • Choi, In-Sung;Jeon, Hong-Jun;Kim, Young-Rae;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.418-418
    • /
    • 2009
  • Vertically aligned arrays of multi-walled carbon nanotube (MWCNT) on layered Si substrates have been synthesized by water-assisted thermal chemical vapor deposition (CVD). We studied changes in growth by parameters of growth temperature, growth time, rates of gas and annealing time of catalyst. Also, We grew CNTs by adding a little amount of water vapor to enhance the growth of CNTs. $H_2$, Ar, and $C_2H_2$ were used as carrier gas and feedstock, respectively. Before growth, Fe served as catalyst, underneath which AI were coated as an underlayer and a diffusion barrier, respectively, on the Si substrate. The water vapor had a greater effect on the growth of CNTs on a smaller thickness of catalyst. When the water vapor was introduced, the growth of CNTs was enhanced than without water. CNTs grew 1.29 mm for 10 min long by adding the water vapor, while CNTs were 0.73 mm long without water vapor for the same period of time. CNTs grew up to 1.97 mm for 30 min prior to growth termination under adding water vapor. As-grown CNTs were characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy.

  • PDF

유동층 화학증착법을 이용하여 증착한 열분해 탄소의 특성에 미치는 증착조건의 영향 (Effect of Deposition Parameters on the Properties of Pyrolytic Carbon Deposited by Fluidized-Bed Chemical Vapor Deposition)

  • 박정남;김원주;박종훈;조문성;이채현;박지연
    • 한국재료학회지
    • /
    • 제18권8호
    • /
    • pp.406-410
    • /
    • 2008
  • The properties of pyrolytic carbon (PyC) deposited from $C_2H_2$ and a mixture of $C_2H_2/C_3H_6$ on $ZrO_2$ particles in a fluidized bed reactor were studied by adjusting the deposition temperature, reactant concentration, and the total gas flow rate. The effect of the deposition parameters on the properties of PyC was investigated by analyzing the microstructure and density change. The density could be varied from $1.0\;g/cm^3$ to $2.2\;g/cm^3$ by controlling the deposition parameters. The density decreased and the deposition rate increased as the deposition temperature and reactant concentration increased. The PyC density was largely dependent on the deposition rate irrespective of the type of the reactant gas used.

기상반응(CVD)법 의한 실리카 미분말의 제조 (Preparation of Ultrafine Silica Powders by Chemical Vapor Deposition Process)

  • 최은영;이윤복;신동우;김광호
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.850-855
    • /
    • 2002
  • Silica powders were prepared from $SiCl_4$-$H_2$O system by chemical vapor deposition process, and investigated on size control of the products with reaction conditions. The products were amorphous and nearly spherical particles with 130nm~50nm in size. The size distribution became narrow with the increase of [$H_2$O]/[SiCl$_4$] concentration ratio. The particle size decreased with the increase of reaction temperature, [$H_2$O]/[SiCl$_4$] concentration ratio and total flow rate. The specific surface area measured by BET method was about three times larger than that of electron microscope method.

Graphene Synthesized by Plasma Enhanced Chemical Vapor Deposition at Low-Temperature

  • Ma, Yifei;Kim, Dae-Kyoung;Xin, Guoqing;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.248-248
    • /
    • 2012
  • Synthesis graphene on Cu substrate by plasma-enhanced chemical vapor deposition (PE-CVD) is investigated and its quality's affection factors are discussed in this work. Compared with the graphene synthesized at high temperature in chemical vapor deposition (CVD), the low-temperature graphene film by PE-CVD has relatively low quality with many defects. However, the advantage of low-temperature is also obvious that low melting point materials will be available to synthesize graphene as substrate. In this study, the temperature will be kept constant in $400^{\circ}C$ and the graphene was grown in plasma environment with changing the plasma power, the flow rate of precursors, and the distance between plasma generator coil and substrates. Then, we investigate the effect of temperature and the influence of process variables to graphene film's quality and characterize the film properties with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF

Large Area Bernal Stacked Bilayer Graphene Grown by Multi Heating Zone Low Pressure Chemical Vapor Deposition

  • Han, Jaehyun;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.239.2-239.2
    • /
    • 2015
  • Graphene is a most interesting material due to its unique and outstanding properties. However, semi-metallic properties of graphene along with zero bandgap energy structure limit further application to optoelectronic devices. Recently, many researchers have shown that band gap can be induced in the Bernal stacked bilayer graphene. Several methods have been used for the controlled growth of the Bernal staked bilayer graphene, but it is still challenging to control the growth process. In this paper, we synthesize the large area Bernal stacked bilayer graphene using multi heating zone low pressure chemical vapor deposition (LPCVD). The synthesized bilayer graphenes are characterized by Raman spectroscopy, optical microscope (OM), scanning electron microscopy (SEM). High resolution transmission electron microscopy (HRTEM) is used for the observation of atomic resolution image of the graphene layers.

  • PDF

The geometry change of carbon nanofilaments by SF6 incorporation in a thermal chemical vapor deposition system

  • Kim, Sung-Hoon
    • 한국결정성장학회지
    • /
    • 제21권3호
    • /
    • pp.119-123
    • /
    • 2011
  • Carbon nanotilaments (CNFs) could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and$H_2$ as source gases under thermal chemical vapor deposition system. By the incorporation of $SF_6$ as a cyclic modulation manner, the geometries of carbon coils-related materials, such as nano-sized coil and wave-like nano-sized coil could be observed on the substrate. The characteristics (formation density and morphology) of as-grown CNFs with or without $SF_6$ incorporation were investigated. Diameter size reduction for the individual CNFs-related shape and the enhancement of the formation density of CNFs-related material could be achieved by the incorporation of $SF_6$ as a cyclic modulation manner. The cause for these results was discussed in association with the slightly increased etching ability by $SF_6$ addition and the sulfur role in SF 6 for the geometry change.

Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition

  • Park, Young Soo;Moon, Hyung Suk;Huh, Mongyoung;Kim, Byung-Joo;Kuk, Yun Su;Kang, Sin Jae;Lee, Seong Hee;An, Kay Hyeok
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.99-104
    • /
    • 2013
  • We investigated the effects of parametric synthesis conditions of catalysts such as sintering temperature, sorts of supports and compositions of catalysts on alignment and length-control of carbon nanotubes (CNTs) using catalyst powders. To obtain aligned CNTs, several parameters were changed such as amount of citric acid, calcination temperature of catalysts, and the sorts of supports using the combustion method as well as to prepare catalyst. CNTs with different lengths were synthesized as portions of molybdenum and iron using a chemical vapor deposition reactor. In this work, the mechanisms of alignment of CNTs and of the length-control of CNTs are discussed.

플라즈마 CVD 를 이용한 탄소나노튜브의 성장 (Growth of Carbon Nanotubes using Plasma-Enhanced Chemical Vapor Deposition)

  • 방윤영;장원석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1236-1239
    • /
    • 2005
  • Aligned carbon nanotubes(CNTs) array were synthesized using DC plasma-enhanced chemical vapor deposition. Silicon substrate Ni-coated of 5nm thickness were pretreated by $NH_3$ gas with a flow rate of 180sccm, for 10min. CNTs were grown on the pretreated substrates at $30%\;C_2H_2:NH_3$ flow ratios for 10min. Carbon nanotubes with diameters from 60 to 80 nanometers and lengths about 2.7 micrometers were obtained. Vertical alignment of carbon nanotubes were observed by FESEM.

  • PDF

The Effect of Growth Temperature on the Epitaxial Growth of Vertically Aligned ZnO Nanowires by Chemical Vapor Deposition

  • 임소영;이도한;장삼석;김아영;변동진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.21.1-21.1
    • /
    • 2011
  • Vertically aligned single-crystal ZnO nanowires have been successfully grown on c-plane sapphire substrate using chemical vapor deposition (CVD) without catalyst. According to growth temperatures, it was changed ZnO growth characteristic. We investigated the effect of substrate temperatures on the growth ZnO films or nanowires on c-plane (0001) sapphire substrates. The ZnO films were acquired at $500^{\circ}C$, whereas the ZnO nanowires were obtained at $600^{\circ}C$, $700^{\circ}C$, and $800^{\circ}C$. The growth behavior diameter and growth rate of ZnO were changed due to different temperature. As a result of analyzing in-plane residual stress by X-ray diffraction, the optimized condition of ZnO nanowires were at $600^{\circ}C$.

  • PDF