• Title/Summary/Keyword: vapor transport method

Search Result 117, Processing Time 0.027 seconds

The Effect of Slurry and Wafer Morphology on the SiC Wafer Surface Quality in CMP Process (CMP 공정에서 슬러리와 웨이퍼 형상이 SiC 웨이퍼 표면품질에 미치는 영향)

  • Park, Jong-Hwi;Yang, Woo-Sung;Jung, Jung-Young;Lee, Sang-Il;Park, Mi-Seon;Lee, Won-Jae;Kim, Jae-Yuk;Lee, Sang-Don;Kim, Ji-Hye
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.312-315
    • /
    • 2011
  • The effect of slurry composition and wafer flatness on a material removal rate (MRR) and resulting surface roughness which are evaluation parameters to determine the CMP characteristics of the on-axis 6H-SiC substrate were systematically investigated. 2-inch SiC wafers were fabricated from the ingot grown by a conventional physical vapor transport (PVT) method were used for this study. The SiC substrate after the CMP process using slurry added oxidizers into slurry consisted of KOH-based colloidal silica and nano-size diamond particle exhibited the significant MRR value and a fine surface without any surface damages. SiC wafers with high bow value after the CMP process exhibited large variation in surface roughness value compared to wafer with low bow value. The CMPprocessed SiC wafer having a low bow value of 1im was observed to result in the Root-mean-square height (RMS) value of 2.747 A and the mean height (Ra) value of 2.147 A.

Characterization of Basal Plane Dislocations in PVT-Grown SiC by Transmission Electron Microscopy

  • Jeong, Myoungho;Kim, Dong-Yeob;Hong, Soon-Ku;Lee, Jeong Yong;Yeo, Im Gyu;Eun, Tai-Hee;Chun, Myoung-Chuel
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.656-661
    • /
    • 2016
  • 4H- and 6H-SiC grown by physical vapor transport method were investigated by transmission electron microscopy (TEM). From the TEM diffraction patterns observed along the [11-20] zone axis, 4H- and 6H-SiC were identified due to their additional diffraction spots, indicating atomic stacking sequences. However, identification was not possible in the [10-10] zone axis due to the absence of additional diffraction spots. Basal plane dislocations (BPDs) were investigated in the TEM specimen prepared along the [10-10] zone axis using the two-beam technique. BPDs were two Shockley partial dislocations with a stacking fault (SF) between them. Shockley partial BPDs arrayed along the [0001] growth direction were observed in the investigated 4H-SiC. This arrayed configuration of Shockley partial BPDs cannot be recognized from the plan view TEM with the [0001] zone axis. The evaluated distances between the two Shockley partial dislocations for the investigated samples were similar to the equilibrium distance, with values of several hundreds of nanometers or even values as large as over a few micrometers.

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

Effect of Native Oxide Layer on the Water Contact Angle to Determine the Surface Polarity of SiC Single Crystals (접촉각 측정방법을 이용한 SiC 단결정의 극성표면 판별에 있어 자연산화막의 영향)

  • Park, Jin Yong;Kim, Jung Gon;Kim, Dae Sung;Yoo, Woo Sik;Lee, Won Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.245-248
    • /
    • 2020
  • The wettability of silicon carbide (SiC) crystal, which has 6H-SiC and 4H-SiC regions prepared using the physical vapor transport (PVT) method, is quantitatively analyzed using dispensed deionized (DI) water droplets. Regardless of the polytypes in SiC, the average of five contact angle measurements showed a difference of about 6° between the Si-face and C-face. The contact angle on the Si-face (C-face) is measured after the removal of the native oxide using BOE (6:1), and revealed a significant decrease of the contact angle from 74.9° (68.4°) to 47.7° (49.3°) and from 75.8° (70.2°) to 51.6° (49.5°) for the 4H-SiC and 6H-SiC regions, respectively. The contact angle of the Si-face recovered over time during room temperature oxidation in air; in contrast, that of the C-face did not recover to the initial value. This study shows that the contact angle is very sensitive to SiC surface polarity, specific surface conditions, and process time. Contact angle measurements are expected to be a rapid way of determining the surface polarity and wettability of SiC crystals.

CVD를 이용한 산화아연 (ZnO) 나노구조 형성 및 특성평가

  • Kim, Jae-Su;Jo, Byeong-Gu;Lee, Gwang-Jae;Park, Dong-U;Kim, Hyeon-Jun;Kim, Jin-Su;Kim, Yong-Hwan;Min, Gyeong-In;Jeong, Hyeon;Jeong, Mun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.179-179
    • /
    • 2010
  • 1차원 나노구조를 갖는 ZnO를 성장하기 위해 Laser ablation, Chemical vapor deposition (CVD), Chemical transport method, Molecular beam epitaxy, Sputtering 등의 다양한 형성법들이 이용되어지고 있다. 특히 대량생산과 경제성 측면에서 많은 장점을 가지고 있는 CVD를 이용한 ZnO 성장 및 응용 연구가 활발하게 수행되고 있다. 본 연구에서는 Thermal CVD를 이용하여 반응물질과 기판 사이의 거리, 기판온도, $O_2$/Zn 비율 등의 성장변수를 변화시켜 ZnO 나노구조를 성장하고 구조 및 광학적 특성을 연구하였다. Scanning electron microscope를 통한 구조 특성평가 결과 반응물질과 기판 사이의 거리가 13 cm 이하의 조건에서 ZnO 나노구조들은 나노판(Nanosheet)과 나노선(Nanowire)이 혼재하여 성장된 것을 보였다. 그리고 반응물질과 기판사이의 거리가 15 cm 이상부터 나노판이 없어지고 수직한 ZnO 나노막대(Nanorod)가 형성되었다. 상온 Photoluminescence 스펙트럼에서 반응물질과 기판사이의 거리가 5에서 15 cm로 증가할수록 결함 (Defect)에 의해 발생된 515 nm 파장의 최대세기 (Maximum intensity)가 10배 이상 감소한 반면, ZnO 나노구조에 의한 378 nm 파장의 NBE발광 (Near band edge emission)은 8배 이상 증가하였다. 이러한 구조 및 광학적 결과로부터, 질서 없이 성장된 것보다 수직 성장된 ZnO 나노구조의 결정질(Crystal quality)이 좋은 것을 확인하였다. 이를 바탕으로 성장변수에 따른 ZnO 나노구조의 형성 메커니즘을 Zn와 O 원자의 성장거동을 기반으로 한 모델을 이용하여 해석하였다.

  • PDF

Semi-Insulating SiC Single Crystals Grown with Purity Levels in SiC Source Materials (고순도 SiC 파우더를 이용한 반절연 SiC 단결정 성장)

  • Lee, Chae Young;Choi, Jeong Min;Kim, Dae Sung;Park, Mi Seon;Jang, Yeon Suk;Lee, Won Jae;Yang, In Seok;Kim, Tae Hee;Chen, Xiufang;Xu, Xiangang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.100-103
    • /
    • 2019
  • The change in vanadium amount according to the growth direction of vanadium-doped semi-insulated (SI) SiC single crystals using high-purity SiC powder was investigated. High-purity SiC powder and a porous graphite (PG) inner crucible were placed on opposite sides of SiC seed crystals. SI SiC crystals were grown on 2 inch 6H-SiC Si-face seeds at a temperature of $2,300^{\circ}C$ and growth pressure of 10~30 mbar of argon atmosphere, using the physical vapor transport (PVT) method. The sliced SiC single crystals were polished using diamond slurry. We analyzed the polytype and quality of the SiC crystals using high-resolution X-ray diffraction (XRD) and Raman spectroscopy. The resistivity of the SI SiC crystals was analyzed using contactless resistivity mapping (COREMA) measurements.

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases (SO2와 다른 기체에 대한 PEG와 Glutaraldehyde가 혼합된 PEBAX 막의 투과 특성)

  • Cho, Eun Hye;Kim, Kwang Bae;Rhim, Ji Won
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.687-693
    • /
    • 2014
  • Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.

Synthesis of Borosilicate Zeotypes by Steam-assisted Conversion Method (수증기 쪼임법에 의한 제올라이트형 보로실리케이트 제조방법)

  • Mansour, R.;Lafjah, M.;Djafri, F.;Bengueddach, A.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.178-185
    • /
    • 2007
  • Intermediate pentasil borosilicate zeolite-like materials have been crystallized by a novel method named steam-assisted conversion, which involves vapor-phase transport of water. Indeed, amorphous powders obtained by drying Na2O.SiO2.B2O3.TBA2O gels of various compositions using different boron sources are transformed into crystalline borosilicate zeolite belonging to pentasil family structure by contact with vapors of water under hydrothermal conditions. Using a variant of this method, a new material which has an intermediate structure of MFI/MEL in the ratio 90:10 was crystallized. The results show that steam and sufficiently high pH in the reacting hydrous solid are necessary for the crystallization to proceed. Characterization of the products shows some specific structural aspects which may have its unique catalytic properties. X-ray diffraction patterns of these microporous crystalline borosilicates are subjected to investigation, then, it is shown that the product structure has good crystallinity and is interpreted in terms of regular stacking of pentasil layers correlated by inversion centers (MFI structure) but interrupted by faults consisting of mirror-related layers (MEL structure). The products are also characterized by nitrogen adsorption at 77 K that shows higher microporous volume (0.160 cc/g) than that of pure MFI phase (0.119 cc/g). The obtained materials revealed high surface area (~600 m2/g). The infrared spectrum reveals the presence of an absorption band at 900.75 cm-1 indicating the incorporation of boron in tetrahedral sites in the silicate matrix of the crystalline phase.

Preparation and characterization of nearly stoichiometric $LiNbO_3$ crystals by VTE method (VTE법에 의한 nearly stoichiometric $LiNbO_3$의 성장 및 특성)

  • 김상수;유동선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.6-17
    • /
    • 1997
  • Lithium niobate single crystals with various [Li]/[Nb] ratios were grown by the Czochralski method from melts having compositions varing between 48.6 ~ 58.0 mol % $Li_2O$. A vapor transport equilibration technique has been used to improve the homogeneity and adjust the [Li]/[Nb] ratio in small $LiNbO_3$ single crystals grown by the Czochralski method. When equilibrated with a Li-rich powder (65 mol%$Li_2O$), containing a mixture of $LiNbO_3$ and $Li_3NbO_4$, crystals of nearly stoichiometric composition can be obtained. This was established by studying the composition dependence of the following properties; lineshape, intensity and linewidth for the electron paramagnetic resonance (EPR) of $Fe^{3+}$ energy of the fundamental absorption edge and $OH^-$ absorption spectra.

  • PDF

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF