Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.6.687

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases  

Cho, Eun Hye (Department of Chemical Engineering, Hannam University)
Kim, Kwang Bae (Department of Chemical Engineering, Hannam University)
Rhim, Ji Won (Department of Chemical Engineering, Hannam University)
Publication Information
Polymer(Korea) / v.38, no.6, 2014 , pp. 687-693 More about this Journal
Abstract
Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.
Keywords
poly(ether-block-amide); poly(ethylene glycol); gas separation; $CO_2$; $SO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Okamota and A. Chakma, $SO_2$ Separation by Reactive Liquid Membranes, Elserier, Amsterdam, 1994.
2 R. J. Heinsohn and R. L. Kabel, Sources and Control of Air Pollution, Prentice Hall, Englewood Cliffs, NJ, 1999.
3 C. A. Scholes, S. E. Kentish, and G. W. Stevens, Sep. Purif. Rev., 38, 1 (2009).   DOI   ScienceOn
4 Y.-Y. Jiang, Z. Zhou, Z. Jiao, L. Li, Y.-T Wu, and Z.-B. Zhang, J. Phys. Chem. B, 111, 5058 (2007).   DOI   ScienceOn
5 M. Teramoto, Q. Huang, T. Maki, and H. Matsuyama, Sep. Purif. Technol., 16, 109 (1999).   DOI
6 H. Lin and B. D. Freeman, J. Memb. Sci., 239, 105 (2004).   DOI   ScienceOn
7 M. Kawakami, H. Iwanaga, Y. Hara, M. Iwamoto, and S. Kagawa, J. Appl. Polym. Sci., 27, 2387 (1982).   DOI
8 A. Sengupta, B. Raghuraman, and K. K. Sirkar, J. Memb. Sci., 51, 105 (1990).   DOI
9 D. L. Kuehne and S. K. Friedlander, Ind. Eng. Chem. Process Des. Dev., 19, 609 (1990).
10 D. L. Kuehne and S. K. Friedlander, Ind. Eng. Chem. Process Des. Dev., 19, 616 (1990).
11 V. I. Bondar, B. D. Freeman, and I. Pinnau, J. Polym. Sci., Part B: Polym. Phys., 38, 2051 (2000).   DOI   ScienceOn
12 J. H. Kim, S. Y. Ha, and Y. M. Lee, J. Memb. Sci., 190, 179 (2001).   DOI   ScienceOn
13 A. Car, C. Stropnik, W. Yave, and K. V. Pinemann, J. Memb. Sci., 307, 88 (2008).   DOI
14 X. Ren, J. Ren, and M. Deng, Sep. Purif. Technol., 89, 1 (2012).   DOI
15 K. Kim, P. G. Ingole, J. Kim, and H. Lee, Chem. Eng. J., 233, 242 (2013).   DOI
16 S. A. Stern, V. M. Shah, and B. J. Hardy, J. Polym. Sci., Part B: Polym. Phys., 25, 1263 (1987).   DOI
17 J. Li, K. Nagai, T. Nakagawa, and S. Wang, J. Appl. Polym. Sci., 58, 1445 (1995).
18 Q. M. Jia, M. Zheng, Y. C. Zhu, J. B. Li, and C. Z. Xu, Eur. Polym. J., 43, 35 (2007).   DOI   ScienceOn