• Title/Summary/Keyword: vanishing moments

Search Result 10, Processing Time 0.02 seconds

HIGH ACCURACY POINTS OF WAVELET APPROXIMATION

  • Kwon, Soon-Geol
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.69-78
    • /
    • 2009
  • The accuracy of wavelet approximation at resolution h = $2^{-k}$ to a smooth function f is limited by O($h^M$), where M is the number of vanishing moments of the mother wavelet ${\psi}$; that is, the approximation order of wavelet approximation is M - 1. High accuracy points of wavelet approximation are of interest in some applications such as signal processing and numerical approximation. In this paper, we prove the scaling and translating properties of high accuracy points of wavelet approximation. To illustrate the results in this paper, we also present two examples of high accuracy points of wavelet approximation.

  • PDF

LITTLEWOOD-PALEY TYPE ESTIMATES FOR BESOV SPACES ON A CUBE BY WAVELET COEFFLCIENTS

  • Kim, Dai-Gyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1075-1090
    • /
    • 1999
  • This paper deals with Littlewood-Paley type estimates of the Besov spaces {{{{ { B}`_{p,q } ^{$\alpha$ } }}}} on the d-dimensional unit cube for 0< p,q<$\infty$ by two certain classes. These classes are including biorthogonal wavelet systems or dual multiscale systems but not necessarily obtained as the dilates or translates of certain fixed functions. The main assumptions are local supports of both classes, sufficient smoothness for one class, and sufficiently many vanishing moments for the other class. With these estimates, we characterize the Besov spaces by coefficient norms of decompositions with respect to biorthogonal wavelet systems on the cube.

  • PDF

SPECTRAL RADIUS OF BIORTHOGONAL WAVELETS WITH ITS APPLICATION

  • Zou, Qingyun;Wang, Guoqiu;Yang, Mengyun
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.941-953
    • /
    • 2014
  • In this paper, a 2-circular matrix theory is developed, and a concept of spectral radius for biorthogonal wavelet is introduced. We propose a novel design method by minimizing the spectral radius and obtain a wavelet which has better performance than the famous 9-7 wavelet in terms of image compression coding.

On the Time-Mean Drift Force Acting on a Floating Offshore Structure in Wave (부유식 해양구조물에 작용하는 시감평균 파표류력에 관한 고찰)

  • 홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.8-18
    • /
    • 2002
  • Formulation of the far-field method for the prediction of time-mean hydrodynamic force and moment acting on a 3-D surface-piercing body in waves is reviewed. It is found that the inequality between the weight of the floating body and its buoyancy force permits the replacement of the fluid particles inside the control surface by the fluid particles outside the control surface. Under such circumstances, momentum exchanges across the control surface make the time-mean value of the time rate of the momentum of the fluid inside the control surface non-vanishing. It is a second-order quantity which is hard to calculate by the far-field method. The drift forces and moments on half-immersed ellipsoids are calculated by both the far-field method and the near-field method. The discrepancy between two numerical results is presented and discussed.

Wavelet-Galerkin Scheme of Inhomogeneous Electromagnetic Problems in the time Domain

  • 정영욱;이용민;최진일;나극환;강준길;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.550-563
    • /
    • 1999
  • A wavelet-Galerkin scheme based on the time-dependent Maxwell's equations is presented. Daubechies wavelet with two vanishing wavelet moments is expanded for basis function in spatial domain and Yee's leap-frog approach is applied. The shifted interpolation property of Daubechies wavelet family leads to the simplified formulations for inhomogeneous media without the additional matrices for the integral or material operator. The stability condition is formulated. The dispersion characteristics are analyzed and compared with those of finite difference time domain and multiresolution time domain methods. The analyses show the excellent trade-off between the regularity and the support width of the basis function. Although the basis function has only two vanishing wavelet moments, it is enough to provide negligible dispersive error in the numerical analysis and its compact support enables only several involved terms per nodes. The storage effectiveness, execution time reduction and accuracy of this scheme are demonstrated by calculating the resonant frequencies of the homogeneous and inhomogeneous cavities.

  • PDF

An Efficient Adaptive Wavelet-Collocation Method Using Lifted Interpolating Wavelets (수정된 보간 웨이블렛응 이용한 적응 웨이블렛-콜로케이션 기법)

  • Kim, Yun-Yeong;Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2100-2107
    • /
    • 2000
  • The wavelet theory is relatively a new development and now acquires popularity and much interest in many areas including mathematics and engineering. This work presents an adaptive wavelet method for a numerical solution of partial differential equations in a collocation sense. Due to the multi-resolution nature of wavelets, an adaptive strategy can be easily realized it is easy to add or delete the wavelet coefficients as resolution levels progress. Typical wavelet-collocation methods use interpolating wavelets having no vanishing moment, but we propose a new wavelet-collocation method on modified interpolating wavelets having 2 vanishing moments. The use of the modified interpolating wavelets obtained by the lifting scheme requires a smaller number of wavelet coefficients as well as a smaller condition number of system matrices. The latter property makes a preconditioned conjugate gradient solver more useful for efficient analysis.

Damage Detection in a Bean Via the Wavelet Transform of Mode Shapes (모드형상의 웨이블렛 변환을 이용한 보의 결함 진단)

  • Lee, Yong-Uk;Kim, Yun-Yeong;Lee, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.916-925
    • /
    • 2000
  • Perhaps, this is the first attempt which applies the wavelet transform to the fundamental vibration mode for damage detection in a beam. Contrary to most existing detection methods on mode shapes, the present method directly works only with the fundamental mode of a damaged beam: no vibration mode shape of a undamaged beam is necessary. Applying the concept of vanishing moments of wavelet functions, we show that wavelet functions are effective damage detectors. Both numerical and experimental results confirm the effectiveness of the present method.

Image Be-noising Using Lifting Scheme (Lifting Scheme을 이용한 이미지 잡음 제거)

  • Park, Young-Seok;Kwak, Hoon-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1731-1734
    • /
    • 2003
  • In this paper, we describe an approach for image denoising using the lifting construction, with the spatial adaptive wavelet transform. The adaptive lifting scheme is implemented in spatial domain to be adjusted thresholds to reduce noise. In this approach we represent adaptive characteristics of biorthogonal wavelets for choosing predictors effectively. Predict filter is changed from sample to sample according to local signal features with their vanishing moments. We in this approach have implemented and applied to image denoising by finding a relevant minimax threshold. Experimental results show that the adaptive method of denoising process is compared with existing ones, such as non-adaptive wavelet, CRF(13, 7) and SWE(13, 7) wavelets used by JPEG2000.

  • PDF

Nonlinear Wavelet Transform Using Lifting (리프팅을 이용한 비선형 웨이블릿 변환)

  • Lee, Chang-Soo;Yoo, Kyung-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3224-3226
    • /
    • 1999
  • This paper introduces a nonlinear wavelet transform based on the lifting scheme, which is applied to signal denoising through the translation invariant wavelet transform. The wavelet representation using orthogonal wavelet bases has received widespread attention. Recently the lifting scheme has been developed for the construction of biorthogonal wavelets in the spatial domain. In this paper, we adaptively reduce the vanishing moments in the discontinuities to suppress the ringing artifacts and this customizes wavelet transforms providing an efficient framework for the translation invariant denoising. Special care has been given to the boundaries, where we design a set of different prediction coefficients to reduce the prediction error.

  • PDF

Damage Detection Using the Lipschitz Exponent Estimation by the Continuous Wavelet Transform : Applied to Vibration Mode Shapes in a Beam (연속웨이블렛 변환에 의한 립쉬츠 지수 평가를 이용한 결함 진단 : 보의 진동모드를 대상으로)

  • 홍진철;김윤영;이호철;이용욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1182-1188
    • /
    • 2001
  • The objective of this paper is to show the effectiveness of the wavelet transform by means of its capability to estimate the Lipschitz exponent. In particular, we show that the magnitude of the Lipschitz exponent can be used as a useful tool estimating the damage extent. An effective method based on the Lipschitz exponent is proposed and we present the results investigated both numerically and experimentally. The continuous wavelet transform by a Mexican hat wavelet having two vanishing moments is utilized for the estimation of the Lipschitz exponent.

  • PDF