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Nonlinear Wavelet Transform Using Lifting

Chang Soo Les, Kyung Yul Yoo
Dept. of Electrical Eng., Hanyang University

Abstract - This paper introduces a nonlinear
wavelet transform based on the lifting scheme,
which is applied to signal denoising through
the translation invariant wavelet transform.
The wavelet representation using orthogonal
wavelet  bases  has received widespread
attention. Recently the lifting scheme has been
developed for the construction of biorthogonal
wavelets in the spatial domain. In this paper,
we adaptively reduce the vanishing moments in
the discontinuities to suppress the ringing
artifacts and this customizes wavelet
transforms providing an efficient framework for
the translation invariant denoising. Special care
has been given to the boundaries, where we
design a set of different prediction coefficients
to reduce the prediction error.

1. Introduction

The wavelet transform is an atomic
decomposition that represents a real-valued
continuous-time signal x(# in terms of shifted
and dilated versions of a prototype bandpass
wavelet function ¢ and lowpass scaling
function ¢(H {1). For special choices of the
wavelet and scaling function. the atoms
6D = 2PEV—B, . k=Z <]
¢.0 = 27¢(2/t— k)
form an orthonormal basis,
decomposed into

() = ?Cm/,k(!) + gogd,;m,;k(:)
with  dju= (D¢ (0dt and o= [, Ddr.

The coefficients {¢;,} and scaling
coefficients {c;} comprise the wavelet transform.
The set of scaling coefficients {c;} represents
coarse signal information at scale j=0, whereas
the set of wavelet coefficients {d;,} represents

detail information at scales 7=1,2,+ - +,J.

The representation of the data using wavelets
coefficients offers an accurate approximation of
f by using only a few wavelet coefficients. It
comes from the fact that the vanishing
moments property of wavelets suppresses
low-order polynomial signals in the highpass
filter and we get a small fraction of wavelet
coefficients (2, 3).

The lifting scheme is

a8
(2)
and x(H could be

(3)

wavelet

a flexible tool for

constructing wavelets without employing the
Fourier transform and could therefore build
wavelet bases over non-translation invariant
domains such as bounded regions of R or
surfaces. The lifting algorithm is asymptotically
twice as fast as the standard DWT algorithm
and allows a fully in-place calculation of the
wavelet transform without allocating auxiliary
memory. The ‘inverse wavelet transform could
be found simply by undoing the operations of
the forward transform. Also all wavelet
transforms could be factored into the lifting
steps with multiple predicts and updates (3, 4).

This paper concerns the application of lifting
scheme to signal denoising. We introduce a
nonlinear lifting which reduces the vanishing
moments in the discontinuities of the data to
customize the DWT . Through the nonlinear
lifting. we can suppress the ringing artifacts
near the discontinuities using the translation
invariant denoising (5). This paper is organized
as follows. Section2 providesthe basicsonthe
lifting scheme and discusses the design
procedure for the predict and update stage. In
Section 3, we review the translation invariant
wavelet denocising algorithm and apply the
nonlinear lifting to signal denoising. Finally
Section 4 contains concluding remarks and
future works.

2. Lifting scheme

The lifting scheme could be used in situations
where the Fourier transform is difficult to
apply. The lifting is a new method for
constructing wavelets. Three steps of the lifting
are described on Fig. 1. {r_;} are computed by

successively applying these three stages and
represent the wavelet coefficients. {4.;} are
also lifted based on these wavelet coefficients
and denote the scaling coefficients.

it

Fig. 1. Structure of lifting scheme : Split,
Predict, and Update

- 3224~



2.1 Split

In this stage, we divide the signal into the
even set {i.;} and the odd set {y_;}. This
mechanism is shown in Fig. 2. At each level 7,
A—(/’—l).2k and /1-(,’—1),2k+1 are set to A—;’,k and Y-k
respectively. In the simulation, we don’t split
the data physically, but the split and predict
stages are combined into one function because
of the in-place calculation (2, 3].
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Fig. 2. Schematic diagram explaining the
split stage

2.2 Predict

The prediction operator P is based on the
polynomial interpolation of order N—1 to find
the predicted values. Through this prediction,
we could suppress signals which resemble
polynomials of order up to N—1(6). For the
cubic interpolation, we have four cases:

* Near the left boundary
Case I. 14 on the left and 3 4’s on the right

- Middle
Case II. 24's on the left and 24’s on the right
* Near the right boundary
Case I. 31’s on the left and 12 on the right
Case IV. 41's on the left and 02’s on the right
To find the prediction coefficients, we first
design a prediction operator P so as to have
better approximation of the signal of order up
to N—1(7]. For N=4, note that all
polynomials of order up to N-1 would be
suppressed if

A
:%z 7%2 ) i:z 82 }2 gz 32 1 = Oy (4)
~3% _9% 3339l g — b3

0
!
Eq. (7) is simplified into
Vb = b, (5)
3 -0 3
S I
where V= 722 7}2 12 32 ,
3 3y ge
% —20, -2t —2% -2° ];, for case I
_ 1, 0, 0, 0 15, for case 1I
b= 4
[o2°% 2h, 28, 23 17, for case Il and
[ 4% 4 4%, 4 17, for case IV

p=(4x1) is the 4-point prediction coefficient
matrix.

Near the discontinuities, we reduced the
number of prediction points because the low
vanishing moments should be used to reduce
the ringing artifacts (pseudo-Gibbs oscillations)
{1), and the lifting became nonlinear.

T The boundary cases are not considered.

2.3 Update
The update stage preserves all the
polynomials of order N—1. To find the update
coefficients, we first initialize the
integral-moment matrix m’e(NxL), where L is
the length of the signal. For N=4 at level
=0,
1111 -
1. 10123 -
= 0149 (6)
01827
Once all the moments have been initialized, the
moments corresponding to the A’s have to be
updated to preserve the average at every level.
The idea is that each 7y coefficient would give
back to the A’s that were used to predict it as
it received, and this amount is given by the
prediction coefficients (6].
= Waize T P2 r 1Muy, £=0,1,2,3 (D
To find the update coefficients for every vy, we
solve an equation:

w = (b ]l

j
Mogroe

i Tt
(o miy mbyp myy Jodh = myey (8)

Finally, we update 4's based on 7's with the
update coefficients. For each 7,

; +
Ajpermy 1= A jpei T w7, 1=0,1,2,3

(9)
3. Translation invariant denoising

As one easily knows, the discrete wavelet
transform is not translation invariant: i.e.,
there is no simple relationship between the
wavelet coefficients of the original and the
shifted signal. In this section, we present a
translation-invariant DWT using an
undecimated  filter  bank (5). The  main
advantage of the wavelet transform without
subsampling is the translation invariance of the
coefficients

With the traditional {(orthogonal, maximally
decimated) denoising, we suffer from visual
artifacts: pseudo-Gibbs oscillations in the
neighborhood of discontinuities are caused by
the lack of translation invariance of the
wavelet basis. When using Haar wavelets, a
discontinuity precisely at location #/2 will lead
to essentially no pseudo-Gibbs oscillations: a
discontinuity near a binary irrational like #/3
will lead to significant pseudo-Gibbs
oscillations. To suppress these artifacts, we've
chosen the translation-invariant denoising (5].

Let X= Wx be the (orthogonal) DWT of x

and Sp be a matrix performing a circular right
shift by R with ReZ. Then

X,= Wx,= WSpx= WSy WX (22)
which establishes the connection between the
wavelet transforms of two shifted versions of a
signal, x and x,, by the orthogonal matrix

WSk wt Using these transforms, all circular
shifts of the input signal are calculated and the
denoised output signals are averaged in the
reconstruction (5].

Four signals, Blocks, Bumps, Heavy Sine,
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and Doppler (5] were tested for signal
denoising. Each signal had 2048 samples and
the standard deviation of them was 7. The
signals were corrupted by a white Gaussian
noise with the standard deviation 1. In Table
1, the root mean square error (RMSE)
performance of the DWT using Daubechies-8
(db8) and the nonlinear lifting is compared.
The RMSEs in Table 1 show that the nonlinear
lifting is close to the Haar when the signal
contains the discontinuities like a Blocks.

Table 1. RMSEs of signal denocising

RMSE
Signal db8 Haar [ Cnlinear
lifting
Blocks | 14.0623 | _ 6.8720 | 8.7683
Bumps | 14.1334 | 16.1131 | 15.4897
HeaviSine| _ 7.8586 | _ 8.3801 |  7.8649
Doppler | _10.6978 | 16.0959 | 11.6372

In Fig. 3 and 4, four signals are translation invariant
denoised through the nonlinear lifting.
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Fig 3. Noised signals
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Fig. 4. Dencised signals

4. Conclusions

In this paper, we have introduced a nonlinear
DWT based on the lifting. Using the lifting
scheme, it is particularly easy to adapt the
DWT to the signals. The nonlinear lifting is
shown to represent both smooth and edgy
signal elements.

For good performance, the shorter wavelets
are required in the neighborhood of
singularities, whereas the longer wavelets with
more vanishing moments could improve the
approximation in regions where the signal is
more regular (8).

In terms of results, the adaptive lifting
becomes the Haar-like DWT when the signal
has singularities. In contrast, its performance
is close to Daubechies 8 when the signal is
more regular.
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