• Title/Summary/Keyword: value of mathematics

Search Result 1,251, Processing Time 0.026 seconds

VALUE SHARING RESULTS OF A MEROMORPHIC FUNCTION f(z) AND f(qz)

  • Qi, Xiaoguang;Liu, Kai;Yang, Lianzhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1235-1243
    • /
    • 2011
  • In this paper, we investigate sharing value problems related to a meromorphic function f(z) and f(qz), where q is a non-zero constant. It is shown, for instance, that if f(z) is zero-order and shares two valves CM and one value IM with f(qz), then f(z) = f(qz).

Uniqueness and Value-sharing of Entire Functions

  • Li, Xiaojuan;Meng, Chao
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.675-682
    • /
    • 2009
  • In this paper, we study the uniqueness problems on entire functions sharing one value. We improve and generalize some previous results of Zhang and Lin [11]. On the one hand, we consider the case for some more general differential polynomials $[f^nP(f)]^{(k)}$ where $P({\omega})$ is a polynomial; on the other hand, we relax the nature of sharing value from CM to IM.

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

SOLUTIONS TO M-POINT BOUNDARY VALUE PROBLEMS OF THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS AT RESONANCE

  • XUE CHUNYAN;DU ZENGJI;GE WEIGAO
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.229-244
    • /
    • 2005
  • In this paper, we study the third order ordinary differential equation : $$x'(t)=f(t,x(t),x'(t),x'(t)),t{\in}(0,1)$$ subject to the boundary value conditions: $$x'(0)=x'(\xi),x'(1)=^{m-3}{\Sigma}_{i=1}{{\beta}x'({\eta}i),x'(1)=0}$$. Here ${\beta}_{i}{\in}R,\;^{m-3}{\Sigma}_{i=1}\;{\beta}_{i}\;=\;1,\;0<{\eta}_1<{\eta}_2<{\cdots}<{\eta}_{m-3}<1,\;0<\xi<1$. This is the case dimKer L = 2. When the ${\beta}_i$ have different signs, we prove some existence results for the m-point boundary value problem at resonance by use of the coincidence degree theory of Mawhin [12, 13]. Since all the existence results obtained in previous papers are for the case dimKerL = 1, our work is new.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

POSITIVE SOLUTIONS OF SINGULAR FOURTH-ORDER TWO POINT BOUNDARY VALUE PROBLEMS

  • Li, Jiemei
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1361-1370
    • /
    • 2009
  • In this paper, we consider singular fourth-order two point boundary value problems $u^{(4)}$ (t) = f(t, u), 0 < t < 1, u(0) = u(l) = u'(0) = u'(l) = 0, where $f:(0,1){\times}(0,+{\infty}){\rightarrow}[0,+{\infty})$ may be singular at t = 0, 1 and u = 0. By using the upper and lower solution method, we obtained the existence of positive solutions to the above boundary value problems. An example is also given to illustrate the obtained theorems.

  • PDF

MULTI-POINT BOUNDARY VALUE PROBLEMS FOR ONE-DIMENSIONAL p-LAPLACIAN AT RESONANCE

  • Wang Youyu;Zhang Guosheng;Ge Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.361-372
    • /
    • 2006
  • In this paper, we consider the multi-point boundary value problems for one-dimensional p-Laplacian at resonance: $({\phi}_p(x'(t)))'=f(t,x(t),x'(t))$, subject to the boundary value conditions: ${\phi}_p(x'(0))={\sum}^{n-2}_{i=1}{\alpha}_i{\phi}_p(x'({\epsilon}i)),\;{\phi}_p(x'(1))={\sum}^{m-2}_{i=1}{\beta}_j{\phi}_p(x'({\eta}_j))$ where ${\phi}_p(s)=/s/^{p-2}s,p>1,\;{\alpha}_i(1,{\le}i{\le}n-2){\in}R,{\beta}_j(1{\le}j{\le}m-2){\in}R,0<{\epsilon}_1<{\epsilon}_2<...<{\epsilon}_{n-2}1,\;0<{\eta}1<{\eta}2<...<{\eta}_{m-2}<1$, By applying the extension of Mawhin's continuation theorem, we prove the existence of at least one solution. Our result is new.

A WEIGHTED EULER METHOD FOR SOLVING STIFF INITIAL VALUE PROBLEMS

  • BEONG IN, YUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.353-361
    • /
    • 2022
  • For an initial value problem, using a weighted average between two adjacent approximates, we propose a simple one-step method based on the Euler method. This method is useful for solving stiff initial value problem, even when the step size is not very small. Moreover, it can be seen that the proposed method with some selected weights results in improved approximation errors.