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Abstract. In this paper, we study the uniqueness problems on entire functions sharing

one value. We improve and generalize some previous results of Zhang and Lin [11]. On the

one hand, we consider the case for some more general differential polynomials [fnP (f)](k)

where P (w) is a polynomial; on the other hand, we relax the nature of sharing value from

CM to IM.

1. Introduction and main results

Let f(z) be a nonconstant meromorphic function in the whole complex
plane. We shall use the following standard notations of value distribution theory:
T (r, f),m(r, f), N(r, f), N(r, f), S(r, f) · · · . We denote by S(r, f) any quantity sat-
isfying S(r, f) = o(T (r, f)), possibly outside a set of finite linear measure that is not
necessarily the same at each occurrence. Let a be a complex number, and k be a

positive integer. For a constant a, we denote by Nk)

(
r, 1

f−a

)
the counting function

of the zeros f(z)− a with multiplicity≤ k, and by Nk)

(
r, 1

f−a

)
the corresponding

one ignoring multiplicity. Let N(k

(
r, 1

f−a

)
be the counting function of the zeros

f(z) − a with multiplicity≥ k, and N (k

(
r, 1

f−a

)
the corresponding one ignoring

multiplicity. Moreover, we define

Nk

(
r,

1

f − a

)
= N

(
r,

1

f − a

)
+N (2

(
r,

1

f − a

)
+ · · ·+N (k

(
r,

1

f − a

)
,

Θ(a, f) = 1− lim
r→∞

N
(
r, 1

f−a

)
T (r, f)

.

Let g(z) be another meromorphic function. If f(z)− a and g(z)− a assume the
same zeros with the same multiplicities, then we call that f(z) and g(z) share the
value a CM, where a is a complex number. We say f and g share the value a IM,
if f − a and g − a assume the same zeros for which multiplicity is not counted.
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In 1997, corresponding to one famous question of Hayman [3], Fang and Hua
[2], Yang and Hua [9] obtained the following unicity theorem:

Theorem A. Let f(z) and g(z) be two nonconstant entire functions, n > 6 be
a positive integer. If fn(z)f ′(z) and gn(z)g′(z) share 1 CM, then either f(z) =
c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying (c1c2)

n+1c2 =
−1, or f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

In 2002, Fang [1] considered k-th derivative instead of 1-th derivative, and ob-
tained the following theorems.

Theorem B. Let f(z) and g(z) be two nonconstant entire functions, let n, k be
two positive integers with n > 2k+ 4. If [fn(z)](k) and [gn(z)](k) share 1 CM, then
either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)
n(nc)2k = 1, or f(z) ≡ tg(z) for a constant t such that tn = 1.

Theorem C. Let f(z) and g(z) be two nonconstant entire functions, let n, k be two
positive integers with n > 2k + 8. If [fn(z)(f(z) − 1)](k) and [gn(z)(g(z) − 1)](k)

share 1 CM, then f(z) ≡ g(z).

Recently, Zhang and Lin [11] studied some cases for some special differential
polynomials [fn(z)(µfm(z) + λ)](k) or [fn(z)(f(z) − 1)m](k) and got the following
Theorems.

For the sake of simplicity, we denote m∗ := χµm, where

χµ =

{
0, µ = 0,
1, µ ̸= 0.

Theorem D. Let f(z) and g(z) be two nonconstant entire functions, let n,m, k
be three positive integers with n > 2k + m∗ + 4, and λ, µ be constants such that
|λ|+ |µ| ̸= 0. If [fn(z)(µfm(z)+λ)](k) and [gn(z)(µgm(z)+λ)](k) share 1 CM, then
(i)when λµ ̸= 0, f(z) ≡ g(z);
(ii)when λµ = 0, either f(z) ≡ tg(z), where t is a constant satisfying tn+m∗

= 1, or
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)kλ2(c1c2)
n+m∗

(n+m∗)2k = 1 or (−1)kµ2(c1c2)
n+m∗

(n+m∗)2k = 1.

Theorem E. Let f(z) and g(z) be three nonconstant entire functions, let n, k,m be
two positive integers with n > 2k+m∗+4. If [fn(z)(f(z)−1)m](k) and [gn(z)(g(z)−
1)m](k) share 1 CM, then either f(z) ≡ g(z) or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(f, g) = wn

1 (w1 − 1)m − wn
2 (w2 − 1)m.

From the above results and Proposition in Section 2, naturally we ask whether
there exists a corresponding unicity theorem to Theorem D and Theorem E for
[fnP (f)](k) where P (w) is a polynomial. In this paper, we give a positive answer
to above question by proving the following theorem.

Theorem 1.1. Let f(z) and g(z) be two nonconstant entire functions. Let P (f) =
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amfm + am−1f
m−1 + · · ·+ a0 (am ̸= 0), and ai is the first nonzero coefficient from

the right, and n, k,m be three positive integers with n > 2k+m+ 4. If [fnP (f)](k)

and [gnP (g)](k) share 1 CM, then

(1) If 0 ≤ i < m, then either f(z) ≡ g(z) or f, g satisfy the algebraic equation
R(f, g) ≡ 0, where R(w1,w2) = wn

1P (w1)− wn
2P (w2).

(2) If i = m, then either f(z) ≡ tg(z), where t is a constant satisfying tn+m = 1 or
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)ka2m(c1c2)
n+m[(n+m)c]2k = 1.

Recently, Meng [6] replaced the CM sharing value by an IM sharing value in
Theorem B and proved the following result.

Theorem F. Let f(z) and g(z) be two transcendental entire functions, n, k two
positive integers with n > 5k + 8. If [fn](k) and [gn](k) share 1 IM. Then ei-
ther f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)
n(nc)2k = 1 or f(z) ≡ tg(z) for a constant t such that tn = 1.

In this paper, we relax the nature of sharing value from CM to IM in Theorem
1.1 and prove the following theorem.

Theorem 1.2. Let f(z) and g(z) be two nonconstant transcendental entire func-
tions. Let P (f) = amfm + am−1f

m−1 + · · · + a0 (am ̸= 0), and ai is the
first nonzero coefficient from the right, and n, k,m be three positive integers with
n+m > (5k + 7)(m+ 1), If [fnP (f)](k) and [gnP (g)](k) share 1 IM, then

(1) If 0 ≤ i < m, then f and g satisfy the algebraic equation R(f, g) ≡ 0, where
R(w1,w2) = wn

1P (w1)− wn
2P (w2).

(2) If i = m, then f(z) ≡ tg(z), where t is a constant satisfying tn+m = 1 or
f(z) = c1e

cz, g(z) = c2e
−cz, where c1,c2 and c are three constants satisfying

(−1)ka2m(c1c2)
n+m[(n+m)c]2k = 1.

Remark. Theorem 1.2 does not hold for the case that f(z) and g(z) are poly-
nomials. For example, let f(z) = z − 1, g(z) = (z − 1)2, P (w) = w − 1 and
k = 1,m = 1, n = 24, then [fnP (f)](k)and [gnP (g)](k) share 1 IM, but R(f, g) ̸≡ 0.

2. Some Lemmas

Proposition 2.3. Let f(z) be a transcendental entire function, and n, k,m be three
positive integers with n ≥ k+2, Then [fnP (f)](k) = 1 (am ̸= 0) has infinitely many
solutions.

In order to prove the above proposition, we require the following lemmas.

Lemma 2.1([8]). Let f(z) be a nonconstant meromorphic function, and let
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am(z) (am ̸≡ 0), am−1(z), · · · , a0(z) be meromorphic functions such that T (r, ai) =
S(r, f), i = 0, 1, 2, · · · , n. Then

T (r, amfm + am−1f
m−1 + · · ·+ a0) = mT (r, f) + S(r, f).

Lemma 2.2([4], [10]). Let f(z) be a transcendental entire function, let k be a
positive integer, and let c be a nonzero finite complex number. Then

T (r, f) ≤ N

(
r,

1

f

)
+N

(
r,

1

f (k) − c

)
−N

(
r,

1

f (k+1)

)
+ S(r, f)

≤ Nk+1

(
r,

1

f

)
+N

(
r,

1

f (k) − c

)
−N0

(
r,

1

f (k+1)

)
+ S(r, f),

where N0

(
r, 1

f(k+1)

)
is the counting function which only counts those points such

that f (k+1) = 0 but f(f (k) − c) ̸= 0.

Proof of Proposition. By Lemma 1 and Lemma 2, we have

(n+m)T (r, f)

= T (r, fnP (f)) + S(r, f)

≤ Nk+1

(
r,

1

fnP (f)

)
+N

(
r,

1

[fnP (f)]
(k) − 1

)
+ S(r, f)

≤ Nk+1

(
r,

1

fn

)
+Nk+1

(
r,

1

P (f)

)
+N

(
r,

1

[fnP (f)]
(k) − 1

)
+ S(r, f)

≤ (k + 1 +m)T (r, f) +N

(
r,

1

[fnP (f)]
(k) − 1

)
+ S(r, f).

Thus we get

(2.1) (n− k − 1)T (r, f) ≤ N

(
r,

1

[fnP (f)]
(k) − 1

)
+ S(r, f).

So we deduce by (2.1) and n ≥ k + 2 that [fnP (f)](k) = 1 has infinitely many
solutions. �

Lemma 2.3([4], [8]). Let f(z) be a transcendental meromorphic function, and let
a1(z), a2(z) be meromorphic functions such that T (r, ai) = S(r, f), i = 1, 2 and
a1 ̸≡ a2. Then

T (r, f) ≤ N(r, f) +N

(
r,

1

f − a1

)
+N

(
r,

1

f − a2

)
+ S(r, f).
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Lemma 2.4([5]). Let F (z) and G(z) be two transcendental entire functions such

that Θ(0, F ) >
5k + 6

5k + 7
, Θ(0, G) >

5k + 6

5k + 7
. If F (z)(k) and G(z)(k) share the value 1

IM, then either F (z)(k)G(z)(k) ≡ 1 or F (z) ≡ G(z).

3. Proof of the main results

Proof of Theorem 1.2. (i) Firstly we consider the case: a0 ̸= 0. Let

(3.1) F = fnP (f), G = gnP (g).

Thus we obtain that F and G share 1 IM. Moreover, by Lemma 2.2, we have

(3.2) T (r, F ) = (n+m)T (r, f) + S(r, f),

(3.3) T (r,G) = (n+m)T (r, g) + S(r, f).

In the view of the assumption n+m > (5k + 7)(m+ 1), we get

(3.4) Θ(0, F ) ≥ 1− m+ 1

m+ n
>

5k + 6

5k + 7
,

(3.5) Θ(0, G) ≥ 1− m+ 1

m+ n
>

5k + 6

5k + 7
,

since

N

(
r,

1

F

)
≤ N

(
r,

1

fn

)
+N

(
r,

1

P (f)

)
≤ N

(
r,

1

f

)
+

m∑
l=1

N

(
r,

1

f − λl

)
≤ (m+ 1)T (r, f),

where λl satisfies P (λl) = 0. Hence by (3.4), (3.5) and Lemma 2.4 we deduce that

F (z)(k)G(z)(k) ≡ 1 or F (z) ≡ G(z).

Next we consider the following two cases:
Case1. F (z)(k)G(z)(k) ≡ 1, that is

(3.6) [fnP (f)]
(k)

[gnP (g)]
(k) ≡ 1.

By f(z) and g(z) are two nonconstant entire functions and n+m > (5k+7)(m+1),
we deduce

f(z) ̸= 0, g(z) ̸= 0.
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Let f(z) = eα(z), where α is a nonconstant entire function, so T (r, α′) = S(r, f).
Thus, by induction we get[

amfm+n
](k)

= pm(α′, α′′, · · · , α(k))e(m+n)α(z),

...

[a0f
n]

(k)
= p0(α

′, α′′, · · · , α(k))enα(z),

where pi(α
′, α′′, · · · , α(k)) (i = 0, 1, · · · ,m) are differential polynomials. Obviously,

pm(α′, α′′, · · · , α(k)) ̸≡ 0 and p0(α
′, α′′, · · · , α(k)) ̸≡ 0.

Considering g is an entire function, we obtain from (3.6) that [fnP (f)](k) ̸= 0, that
is

pm(α′, α′′, · · · , α(k))emα(z) + · · ·+ p0(α
′, α′′, · · · , α(k)) ̸= 0.

Since T (r, α(j)) ≤ T (r, α′) + S(r, f) = S(r, f), for j = 1, 2, · · · , k. We deduce that

T (r, pm) = S(r, f), · · · , T (r, p0) = S(r, f).

Note that f = eα. Thus, we have

mT (r, f)

= T (r, pmemα + · · ·+ p1e
α) + S(r, f)

≤ N

(
r,

1

pmemα + · · ·+ p1eα

)
+N

(
r,

1

pmemα + · · ·+ p1eα + p0

)
+ S(r, f)

≤ N

(
r,

1

pme(m−1)α + · · ·+ p1

)
+ S(r, f)

≤ (m− 1)T (r, f) + S(r, f),

which is a contradiction.
Case2. F (z) ≡ G(z), that is fnP (f) ≡ gnP (g), Then f and g satisfy the algebraic
equation R(f, g) ≡ 0, where R(w1,w2) = wn

1P (w1)− wn
2P (w2).

(ii)If aj = 0 (0 ≤ j < i) and ai ̸= 0, then

F = fn+i
(
amfm−i + · · ·+ ai

)
, G = gn+i

(
amgm−i + · · ·+ ai

)
.

By the assumption n+m > (5k + 7) (m+ 1), we get

(3.7) Θ(0, F ) ≥ 1− m− i+ 1

m+ n
>

5k + 6

5k + 7
,

(3.8) Θ(0, G) ≥ 1− m− i+ 1

m+ n
>

5k + 6

5k + 7
,
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since

N

(
r,

1

F

)
≤ N

(
r,

1

fn+i

)
+N

(
r,

1

amfm−i + · · ·+ ai

)
≤ N

(
r,

1

f

)
+

m−i∑
l=0

N

(
r,

1

f − λl

)
≤ (m− i+ 1)T (r, f),

where λl satisfies amλm−i
l + · · · + ai = 0. From the above result, we deduce

that f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(w1,w2) =
wn+i

1

(
amwm−i

1 + · · ·+ ai
)
− wn+i

2

(
amwm−i

2 + · · ·+ ai
)
= wn

1P (w1)− wn
2P (w2).

(iii) If aj = 0 (0 ≤ j < m) and am ̸= 0, then

F = amfn+m, G = amgn+m.

Since N
(
r, 1

F

)
= N

(
r, 1

f

)
< T (r, f) and n+m > (5k + 7)(m+ 1), we obtain that

(3.9) Θ(0, F ) ≥ 1− 1

m+ n
>

5k + 6

5k + 7
,

(3.10) Θ(0, G) ≥ 1− 1

m+ n
>

5k + 6

5k + 7
.

Therefore by Lemma 2.4 we deduce that

F (z)(k)G(z)(k) ≡ 1 or F (z) ≡ G(z).

Next we consider two cases.
Case1. F (z)(k)G(z)(k) ≡ 1, that is [amfn+m]

(k)
[amgn+m]

(k) ≡ 1. Since f(z) and
g(z) are two nonconstant entire functions, we see that[

amfn+m
](k) ̸= 0,

[
amgn+m

](k) ̸= 0.

Proceeding as in the proof of Theorem D, we obtain the desired result, that is
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)
k
a2m (c1c2)

n+m
[(n+m)c]

2k
= 1.

Case2. F (z) ≡ G(z), that is fn+m = gn+m. Hence, we get that f(z) ≡ tg(z),
where t is a constant satisfying tn+m = 1. This completes the proof of Theorem
1.2. �
Proof of Theorem 1.1. Proceeding as in the proof of Theorem D, Theorem E and
Theorem 1.2, we can get the conclusion of Theorem 1.1. �

Acknowledgment. The authors would like to thank the referee for his/her valu-
able suggestions.



682 Xiaojuan Li and Chao Meng

References

[1] M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl.,
44(2002), 828-831.

[2] M. L. Fang and X. H. Hua, Entire functions that share one value, J. Nanjing Univ.
Math. Biquarterly, 13(1)(1996), 44-48.

[3] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann.
of Math., 70(1959), 9-42.

[4] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

[5] C. Meng, On unicity of entire functions concerning differential polynomials, Interna-
tional Journal of Modern Mathematics, 4(2)(2009), in press.

[6] C. Meng, Value sharing of entire functions, Appl. Math. E-Notes, 8(2008), 179-185.

[7] Y. Xu and H. L. Qiu, Entire functions sharing one value IM, Indian J. Pure Appl.
Math., 31(2000), 849-855.

[8] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125(1972), 107-
112.

[9] C. C. Yang and X. H. Hua, Uniquenessand value-sharing of meromorphic functions,
Ann. Acad. Sci. Fenn. Math., 22(2)(1997), 395-406.

[10] L. Yang, Value DistributionTheory, Springer-Verlag, Berlin, 1993.

[11] X. Y. Zhang and W. C. Lin, Uniqueness and value-sharing of entire functions, J.
Math. Anal. Appl., 343(2008), 938-950.


