KYUNGPOOK Math. J. 49(2009), 675-682

Uniqueness and Value-sharing of Entire Functions

Xiaojuan Li* and Chao Meng

Department of Mathematics, Shandong University, Jinan 250100, P. R. China e-mail: zimu0420@yahoo.cn and mengchaosdu@yahoo.com.cn

ABSTRACT. In this paper, we study the uniqueness problems on entire functions sharing one value. We improve and generalize some previous results of Zhang and Lin [11]. On the one hand, we consider the case for some more general differential polynomials $[f^n P(f)]^{(k)}$ where P(w) is a polynomial; on the other hand, we relax the nature of sharing value from CM to IM.

1. Introduction and main results

Let f(z) be a nonconstant meromorphic function in the whole complex plane. We shall use the following standard notations of value distribution theory: $T(r, f), m(r, f), N(r, f), \overline{N}(r, f), S(r, f) \cdots$. We denote by S(r, f) any quantity satisfying S(r, f) = o(T(r, f)), possibly outside a set of finite linear measure that is not necessarily the same at each occurrence. Let a be a complex number, and k be a positive integer. For a constant a, we denote by N_{k} $\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros f(z) - a with multiplicity $\leq k$, and by \overline{N}_{k} $\left(r, \frac{1}{f-a}\right)$ the corresponding one ignoring multiplicity. Let $N_{(k}\left(r, \frac{1}{f-a}\right)$ be the counting function of the zeros f(z) - a with multiplicity $\geq k$, and $\overline{N}_{(k}\left(r, \frac{1}{f-a}\right)$ the corresponding one ignoring multiplicity. Moreover, we define

$$N_k\left(r,\frac{1}{f-a}\right) = \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}_{(2}\left(r,\frac{1}{f-a}\right) + \dots + \overline{N}_{(k}\left(r,\frac{1}{f-a}\right),$$
$$\Theta(a,f) = 1 - \overline{\lim_{r \to \infty} \frac{\overline{N}\left(r,\frac{1}{f-a}\right)}{T\left(r,f\right)}}.$$

Let g(z) be another meromorphic function. If f(z) - a and g(z) - a assume the same zeros with the same multiplicities, then we call that f(z) and g(z) share the value a CM, where a is a complex number. We say f and g share the value a IM, if f - a and g - a assume the same zeros for which multiplicity is not counted.

^{*} Corresponding author.

Received September 27, 2008; accepted May 26, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 30D35.

Key words and phrases: uniqueness, entire function, sharing value.

⁶⁷⁵

In 1997, corresponding to one famous question of Hayman [3], Fang and Hua [2], Yang and Hua [9] obtained the following unicity theorem:

Theorem A. Let f(z) and g(z) be two nonconstant entire functions, $n \ge 6$ be a positive integer. If $f^n(z)f'(z)$ and $g^n(z)g'(z)$ share 1 CM, then either $f(z) = c_1e^{cz}$, $g(z) = c_2e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(c_1c_2)^{n+1}c^2 = -1$, or $f(z) \equiv tg(z)$ for a constant t such that $t^{n+1} = 1$.

In 2002, Fang [1] considered k-th derivative instead of 1-th derivative, and obtained the following theorems.

Theorem B. Let f(z) and g(z) be two nonconstant entire functions, let n, k be two positive integers with n > 2k + 4. If $[f^n(z)]^{(k)}$ and $[g^n(z)]^{(k)}$ share 1 CM, then either $f(z) = c_1 e^{cz}, g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$, or $f(z) \equiv tg(z)$ for a constant t such that $t^n = 1$.

Theorem C. Let f(z) and g(z) be two nonconstant entire functions, let n, k be two positive integers with n > 2k + 8. If $[f^n(z)(f(z) - 1)]^{(k)}$ and $[g^n(z)(g(z) - 1)]^{(k)}$ share 1 CM, then $f(z) \equiv g(z)$.

Recently, Zhang and Lin [11] studied some cases for some special differential polynomials $[f^n(z)(\mu f^m(z) + \lambda)]^{(k)}$ or $[f^n(z)(f(z) - 1)^m]^{(k)}$ and got the following Theorems.

For the sake of simplicity, we denote $m^* := \chi_{\mu} m$, where

$$\chi_{\mu} = \begin{cases} 0, & \mu = 0, \\ 1, & \mu \neq 0. \end{cases}$$

Theorem D. Let f(z) and g(z) be two nonconstant entire functions, let n, m, k be three positive integers with $n > 2k + m^* + 4$, and λ, μ be constants such that $|\lambda| + |\mu| \neq 0$. If $[f^n(z)(\mu f^m(z) + \lambda)]^{(k)}$ and $[g^n(z)(\mu g^m(z) + \lambda)]^{(k)}$ share 1 CM, then (i) when $\lambda \mu \neq 0$, $f(z) \equiv g(z)$;

(ii) when $\lambda \mu = 0$, either $f(z) \equiv tg(z)$, where t is a constant satisfying $t^{n+m^*} = 1$, or $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying

$$(-1)^k \lambda^2 (c_1 c_2)^{n+m^*} (n+m^*)^{2k} = 1 \text{ or } (-1)^k \mu^2 (c_1 c_2)^{n+m^*} (n+m^*)^{2k} = 1.$$

Theorem E. Let f(z) and g(z) be three nonconstant entire functions, let n, k, m be two positive integers with $n > 2k + m^* + 4$. If $[f^n(z)(f(z)-1)^m]^{(k)}$ and $[g^n(z)(g(z)-1)^m]^{(k)}$ share 1 CM, then either $f(z) \equiv g(z)$ or f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(f,g) = w_1^n(w_1-1)^m - w_2^n(w_2-1)^m$.

From the above results and Proposition in Section 2, naturally we ask whether there exists a corresponding unicity theorem to Theorem D and Theorem E for $[f^n P(f)]^{(k)}$ where P(w) is a polynomial. In this paper, we give a positive answer to above question by proving the following theorem.

Theorem 1.1. Let f(z) and g(z) be two nonconstant entire functions. Let P(f) =

 $a_m f^m + a_{m-1} f^{m-1} + \cdots + a_0 \ (a_m \neq 0)$, and a_i is the first nonzero coefficient from the right, and n, k, m be three positive integers with n > 2k + m + 4. If $[f^n P(f)]^{(k)}$ and $[g^n P(g)]^{(k)}$ share 1 CM, then

(1) If $0 \le i < m$, then either $f(z) \equiv g(z)$ or f, g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(w_1,w_2) = w_1^n P(w_1) - w_2^n P(w_2)$.

(2) If i = m, then either $f(z) \equiv tg(z)$, where t is a constant satisfying $t^{n+m} = 1$ or $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1 , c_2 and c are three constants satisfying

$$(-1)^k a_m^2 (c_1 c_2)^{n+m} [(n+m)c]^{2k} = 1.$$

Recently, Meng [6] replaced the CM sharing value by an IM sharing value in Theorem B and proved the following result.

Theorem F. Let f(z) and g(z) be two transcendental entire functions, n, k two positive integers with $n \ge 5k + 8$. If $[f^n]^{(k)}$ and $[g^n]^{(k)}$ share 1 IM. Then either $f(z) = c_1 e^{cz}, g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$ or $f(z) \equiv tg(z)$ for a constant t such that $t^n = 1$.

In this paper, we relax the nature of sharing value from CM to IM in Theorem 1.1 and prove the following theorem.

Theorem 1.2. Let f(z) and g(z) be two nonconstant transcendental entire functions. Let $P(f) = a_m f^m + a_{m-1} f^{m-1} + \cdots + a_0$ $(a_m \neq 0)$, and a_i is the first nonzero coefficient from the right, and n, k, m be three positive integers with n + m > (5k + 7)(m + 1), If $[f^n P(f)]^{(k)}$ and $[g^n P(g)]^{(k)}$ share 1 IM, then

(1) If $0 \le i < m$, then f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(w_1, w_2) = w_1^n P(w_1) - w_2^n P(w_2)$.

(2) If i = m, then $f(z) \equiv tg(z)$, where t is a constant satisfying $t^{n+m} = 1$ or $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2 and c are three constants satisfying

$$(-1)^k a_m^2 (c_1 c_2)^{n+m} [(n+m)c]^{2k} = 1.$$

Remark. Theorem 1.2 does not hold for the case that f(z) and g(z) are polynomials. For example, let f(z) = z - 1, $g(z) = (z - 1)^2$, P(w) = w - 1 and k = 1, m = 1, n = 24, then $[f^n P(f)]^{(k)}$ and $[g^n P(g)]^{(k)}$ share 1 IM, but $R(f,g) \neq 0$.

2. Some Lemmas

Proposition 2.3. Let f(z) be a transcendental entire function, and n, k, m be three positive integers with $n \ge k+2$, Then $[f^n P(f)]^{(k)} = 1$ ($a_m \ne 0$) has infinitely many solutions.

In order to prove the above proposition, we require the following lemmas.

Lemma 2.1([8]). Let f(z) be a nonconstant meromorphic function, and let

 $a_m(z)$ $(a_m \neq 0), a_{m-1}(z), \dots, a_0(z)$ be meromorphic functions such that $T(r, a_i) = S(r, f), i = 0, 1, 2, \dots, n$. Then

$$T(r, a_m f^m + a_{m-1} f^{m-1} + \dots + a_0) = mT(r, f) + S(r, f)$$

Lemma 2.2([4], [10]). Let f(z) be a transcendental entire function, let k be a positive integer, and let c be a nonzero finite complex number. Then

$$T(r,f) \leq N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f^{(k)}-c}\right) - N\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f)$$

$$\leq N_{k+1}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f^{(k)}-c}\right) - N_0\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f),$$

where $N_0\left(r, \frac{1}{f^{(k+1)}}\right)$ is the counting function which only counts those points such that $f^{(k+1)} = 0$ but $f(f^{(k)} - c) \neq 0$.

Proof of Proposition. By Lemma 1 and Lemma 2, we have

$$\begin{aligned} &(n+m)T(r,f) \\ &= T(r,f^nP(f)) + S(r,f) \\ &\leq N_{k+1}\left(r,\frac{1}{f^nP(f)}\right) + \overline{N}\left(r,\frac{1}{\left[f^nP(f)\right]^{(k)}-1}\right) + S(r,f) \\ &\leq N_{k+1}\left(r,\frac{1}{f^n}\right) + N_{k+1}\left(r,\frac{1}{P(f)}\right) + \overline{N}\left(r,\frac{1}{\left[f^nP(f)\right]^{(k)}-1}\right) + S(r,f) \\ &\leq (k+1+m)T(r,f) + \overline{N}\left(r,\frac{1}{\left[f^nP(f)\right]^{(k)}-1}\right) + S(r,f). \end{aligned}$$

Thus we get

(2.1)
$$(n-k-1)T(r,f) \le \overline{N}\left(r,\frac{1}{[f^n P(f)]^{(k)}-1}\right) + S(r,f).$$

So we deduce by (2.1) and $n \ge k+2$ that $[f^n P(f)]^{(k)} = 1$ has infinitely many solutions.

Lemma 2.3([4], [8]). Let f(z) be a transcendental meromorphic function, and let $a_1(z)$, $a_2(z)$ be meromorphic functions such that $T(r, a_i) = S(r, f)$, i = 1, 2 and $a_1 \neq a_2$. Then

$$T(r,f) \leq \overline{N}(r,f) + \overline{N}\left(r,\frac{1}{f-a_1}\right) + \overline{N}\left(r,\frac{1}{f-a_2}\right) + S(r,f).$$

678

Lemma 2.4([5]). Let F(z) and G(z) be two transcendental entire functions such that $\Theta(0,F) > \frac{5k+6}{5k+7}$, $\Theta(0,G) > \frac{5k+6}{5k+7}$. If $F(z)^{(k)}$ and $G(z)^{(k)}$ share the value 1 IM, then either $F(z)^{(k)}G(z)^{(k)} \equiv 1$ or $F(z) \equiv G(z)$.

3. Proof of the main results

Proof of Theorem 1.2. (i) Firstly we consider the case: $a_0 \neq 0$. Let

(3.1)
$$F = f^n P(f), \qquad G = g^n P(g).$$

Thus we obtain that F and G share 1 IM. Moreover, by Lemma 2.2, we have

(3.2)
$$T(r,F) = (n+m)T(r,f) + S(r,f),$$

(3.3)
$$T(r,G) = (n+m)T(r,g) + S(r,f).$$

In the view of the assumption n + m > (5k + 7)(m + 1), we get

(3.4)
$$\Theta(0,F) \ge 1 - \frac{m+1}{m+n} > \frac{5k+6}{5k+7} ,$$

(3.5)
$$\Theta(0,G) \ge 1 - \frac{m+1}{m+n} > \frac{5k+6}{5k+7} ,$$

since

$$\overline{N}\left(r,\frac{1}{F}\right) \leq \overline{N}\left(r,\frac{1}{f^n}\right) + \overline{N}\left(r,\frac{1}{P(f)}\right)$$
$$\leq \overline{N}\left(r,\frac{1}{f}\right) + \sum_{l=1}^m \overline{N}\left(r,\frac{1}{f-\lambda_l}\right)$$
$$\leq (m+1)T(r,f),$$

where λ_l satisfies $P(\lambda_l) = 0$. Hence by (3.4), (3.5) and Lemma 2.4 we deduce that

$$F(z)^{(k)}G(z)^{(k)} \equiv 1 \text{ or } F(z) \equiv G(z).$$

Next we consider the following two cases: Case1. $F(z)^{(k)}G(z)^{(k)} \equiv 1$, that is

(3.6)
$$[f^n P(f)]^{(k)} [g^n P(g)]^{(k)} \equiv 1.$$

By f(z) and g(z) are two nonconstant entire functions and n+m>(5k+7)(m+1), we deduce

$$f(z) \neq 0, \quad g(z) \neq 0.$$

Let $f(z) = e^{\alpha(z)}$, where α is a nonconstant entire function, so $T(r, \alpha') = S(r, f)$. Thus, by induction we get

$$\left[a_m f^{m+n}\right]^{(k)} = p_m(\alpha', \alpha'', \cdots, \alpha^{(k)}) e^{(m+n)\alpha(z)},$$

$$\vdots$$

$$[a_0 f^n]^{(k)} = p_0(\alpha', \alpha'', \cdots, \alpha^{(k)}) e^{n\alpha(z)},$$

where $p_i(\alpha', \alpha'', \dots, \alpha^{(k)})$ $(i = 0, 1, \dots, m)$ are differential polynomials. Obviously,

$$p_m(\alpha', \alpha'', \cdots, \alpha^{(k)}) \neq 0$$
 and $p_0(\alpha', \alpha'', \cdots, \alpha^{(k)}) \neq 0$.

Considering g is an entire function, we obtain from (3.6) that $[f^n P(f)]^{(k)} \neq 0$, that is

$$p_m(\alpha', \alpha'', \cdots, \alpha^{(k)})e^{m\alpha(z)} + \cdots + p_0(\alpha', \alpha'', \cdots, \alpha^{(k)}) \neq 0.$$

Since $T(r, \alpha^{(j)}) \leq T(r, \alpha') + S(r, f) = S(r, f)$, for $j = 1, 2, \cdots, k$. We deduce that

$$T(r, p_m) = S(r, f), \cdots, T(r, p_0) = S(r, f).$$

Note that $f = e^{\alpha}$. Thus, we have

$$\begin{split} mT(r,f) &= T(r,p_m e^{m\alpha} + \dots + p_1 e^{\alpha}) + S(r,f) \\ &\leq \overline{N}\left(r,\frac{1}{p_m e^{m\alpha} + \dots + p_1 e^{\alpha}}\right) + \overline{N}\left(r,\frac{1}{p_m e^{m\alpha} + \dots + p_1 e^{\alpha} + p_0}\right) + S(r,f) \\ &\leq \overline{N}\left(r,\frac{1}{p_m e^{(m-1)\alpha} + \dots + p_1}\right) + S(r,f) \\ &\leq (m-1)T(r,f) + S(r,f), \end{split}$$

which is a contradiction.

Case2. $F(z) \equiv G(z)$, that is $f^n P(f) \equiv g^n P(g)$, Then f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(w_1,w_2) = w_1^n P(w_1) - w_2^n P(w_2)$. (ii)If $a_j = 0 \ (0 \le j < i)$ and $a_i \ne 0$, then

$$F = f^{n+i} \left(a_m f^{m-i} + \dots + a_i \right), \quad G = g^{n+i} \left(a_m g^{m-i} + \dots + a_i \right).$$

By the assumption n + m > (5k + 7)(m + 1), we get

(3.7)
$$\Theta(0,F) \ge 1 - \frac{m-i+1}{m+n} > \frac{5k+6}{5k+7} ,$$

(3.8)
$$\Theta(0,G) \ge 1 - \frac{m-i+1}{m+n} > \frac{5k+6}{5k+7} ,$$

680

since

$$\begin{split} \overline{N}\left(r,\frac{1}{F}\right) &\leq \overline{N}\left(r,\frac{1}{f^{n+i}}\right) + \overline{N}\left(r,\frac{1}{a_m f^{m-i} + \dots + a_i}\right) \\ &\leq \overline{N}\left(r,\frac{1}{f}\right) + \sum_{l=0}^{m-i} \overline{N}\left(r,\frac{1}{f - \lambda_l}\right) \\ &\leq (m-i+1)T(r,f), \end{split}$$

where λ_l satisfies $a_m \lambda_l^{m-i} + \cdots + a_i = 0$. From the above result, we deduce that f and g satisfy the algebraic equation $R(f,g) \equiv 0$, where $R(w_1,w_2) = w_1^{n+i} (a_m w_1^{m-i} + \cdots + a_i) - w_2^{n+i} (a_m w_2^{m-i} + \cdots + a_i) = w_1^n P(w_1) - w_2^n P(w_2)$. (iii) If $a_j = 0 \ (0 \le j < m)$ and $a_m \ne 0$, then

$$F = a_m f^{n+m}, \quad G = a_m g^{n+m}$$

Since $\overline{N}\left(r, \frac{1}{F}\right) = \overline{N}\left(r, \frac{1}{f}\right) < T(r, f)$ and n + m > (5k + 7)(m + 1), we obtain that

(3.9)
$$\Theta(0,F) \ge 1 - \frac{1}{m+n} > \frac{5k+6}{5k+7} ,$$

(3.10)
$$\Theta(0,G) \ge 1 - \frac{1}{m+n} > \frac{5k+6}{5k+7} \; .$$

Therefore by Lemma 2.4 we deduce that

$$F(z)^{(k)}G(z)^{(k)} \equiv 1 \text{ or } F(z) \equiv G(z).$$

Next we consider two cases.

Case1. $F(z)^{(k)}G(z)^{(k)} \equiv 1$, that is $[a_m f^{n+m}]^{(k)} [a_m g^{n+m}]^{(k)} \equiv 1$. Since f(z) and q(z) are two nonconstant entire functions, we see that

$$[a_m f^{n+m}]^{(k)} \neq 0, \quad [a_m g^{n+m}]^{(k)} \neq 0.$$

Proceeding as in the proof of Theorem D, we obtain the desired result, that is $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1 , c_2 and c are three constants satisfying

$$(-1)^{k} a_{m}^{2} (c_{1}c_{2})^{n+m} [(n+m)c]^{2k} = 1.$$

Case2. $F(z) \equiv G(z)$, that is $f^{n+m} = g^{n+m}$. Hence, we get that $f(z) \equiv tg(z)$, where t is a constant satisfying $t^{n+m} = 1$. This completes the proof of Theorem 1.2. \square

Proof of Theorem 1.1. Proceeding as in the proof of Theorem D, Theorem E and Theorem 1.2, we can get the conclusion of Theorem 1.1. \square

Acknowledgment. The authors would like to thank the referee for his/her valuable suggestions.

References

- M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl., 44(2002), 828-831.
- [2] M. L. Fang and X. H. Hua, Entire functions that share one value, J. Nanjing Univ. Math. Biquarterly, 13(1)(1996), 44-48.
- [3] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math., 70(1959), 9-42.
- [4] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [5] C. Meng, On unicity of entire functions concerning differential polynomials, International Journal of Modern Mathematics, 4(2)(2009), in press.
- [6] C. Meng, Value sharing of entire functions, Appl. Math. E-Notes, 8(2008), 179-185.
- [7] Y. Xu and H. L. Qiu, Entire functions sharing one value IM, Indian J. Pure Appl. Math., 31(2000), 849-855.
- [8] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125(1972), 107-112.
- C. C. Yang and X. H. Hua, Uniquenessand value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22(2)(1997), 395-406.
- [10] L. Yang, Value DistributionTheory, Springer-Verlag, Berlin, 1993.
- [11] X. Y. Zhang and W. C. Lin, Uniqueness and value-sharing of entire functions, J. Math. Anal. Appl., 343(2008), 938-950.

682