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ABSTRACT. For an initial value problem, using a weighted average between two adjacent ap-
proximates, we propose a simple one-step method based on the Euler method. This method is
useful for solving stiff initial value problem, even when the step size is not very small. More-
over, it can be seen that the proposed method with some selected weights results in improved
approximation errors.

1. INTRODUCTION

For an initial value problem, y′(t) = f(t, y), a ≤ t ≤ b, with y(a) = α, we can find lots of
standard numerical methods in the literature (see [1, 2, 3, 4, 5], for example). These methods
provide splendid approximations when they are applied to regular initial value problems. But,
for the initial value problem having a so-called stiff differential equation where the solution
contains transient terms decaying rapidly, most methods are unstable when the step size is not
small enough [6, 7, 8, 9]. To overcome this problem one can use implicit methods(or backward
methods). Recently, the author proposed an improved second order implicit method based on
the weighted average between two approximates on the adjacent nodes [10]. Although this
method leads to improved errors and is available for stiff problems, it still has the fundamental
problem that the derivative of the given function f and additional iterations are required to
solve the resulting nonlinear equation.

In this paper, we develop a new simple explicit method based on the standard Euler method.
We use the weighted average between two approximates on adjacent nodes with a weight 0 <
ω < 1. It is proved that the convergence order of the resulting method becomes around 2 for the
weight ω nearby 1

2 . In fact, the proposed method with ω = 1
2 corresponds to the well-known

midpoint method(or Runge-Kutta method of order 2). This means that the proposed method
can be regarded as a generalized version of the midpoint method including the parameter ω.

From the numerical result of the proposed method applied to some selected test examples
of stiff equations, we can find the usefulness of the method. Moreover, it can be seen that the
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optimal value of the weight ω for each used step size h lies to the right of the midpoint ω = 1
2

and it becomes close to 1
2 as h decreases.

2. DERIVATION OF THE METHOD

For the numerical solution of the initial value problem, we take the equidistant grid points

ti = a+ ih , i = 0, 1, 2, . . . , N,

with step size h = (b − a)/N . In this section we develop a new one-step explicit method for
finding the approximate yi+1 ≈ y(ti+1) using the previous approximate yi ≈ y(ti).

For each i fixed, we define weighted averages between adjacent nodes ti and ti+1 and cor-
responding approximates yi and yi+1 as

t
[ω]
i = ωti + (1− ω)ti+1 , y

[ω]
i = ωyi + (1− ω)yi+1 , (2.1)

where 0 < ω < 1.
Employing the Euler method associated with the weighted averages t[ω]i and y

[ω]
i above, with

ti+1 − t
[ω]
i = ωh, we have the following equation to determine yi+1.

yi+1 = y
[ω]
i + ωhf

(
t
[ω]
i , y

[ω]
i

)
. (2.2)

If the first term y
[ω]
i in the right hand side of (2.2) is replaced by ωyi + (1− ω)yi+1 as given in

the Eq. (2.1), then it follows that

yi+1 = yi + hf
(
t
[ω]
i , y

[ω]
i

)
. (2.3)

This equation becomes the implicit method proposed in the literature [10] if y[ω]i in f
(
t
[ω]
i , y

[ω]
i

)
is also replaced by ωyi + (1 − ω)yi+1. However, in order to develop an explicit method that
overcomes the drawback of the implicit method, in this work we replace y

[ω]
i in f

(
t
[ω]
i , y

[ω]
i

)
by the formula based on the Euler method as

y
[ω]
i = yi + (1− ω)hf(ti, yi), (2.4)

noting that t[ω]i − ti = (1− ω)h. Combining the formulas (2.3) and (2.4), we have

yi+1 = yi + hf
(
t
[ω]
i , yi + (1− ω)hf(ti, yi)

)
. (2.5)

The special case of ω = 1
2 becomes the well-known midpoint method below.

yi+1 = yi + hf

(
ti +

h

2
, yi +

h

2
f(ti, yi)

)
.

The following theorem shows that the convergence order of the proposed method becomes 2
when the weight ω goes to 1

2 . The resulting statement and its proof are similar to those provided
in the literature [10] which deals with an implicit version of the main idea of this work.
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Theorem 2.1. For the initial value problem y′(t) = f(t, y), a ≤ t ≤ b, with y(a) = α,
suppose f(t, y) satisfies a Lipschitz condition in the variable y with a Lipschitz constant L on
a set D = {(t, y) | a ≤ t ≤ b, −∞ < y < ∞}. Furthermore, let f be twice continuously
differentiable in D and let the exact solution y(t) satisfy

|y′′(t)| ≤ M , (t ∈ [a, b])

for a constant M > 0. Then, for each i = 0, 1, 2, . . . , N − 1 the approximate solution yi+1 to
y(ti+1) obtained by the formula (2.5) with 0 < ω < 1 satisfies

|y (ti+1)− yi+1| ≤
(
M

L

∣∣∣∣ω − 1

2

∣∣∣∣h+
C

L
h2

){
e(i+1)hL − 1

}
,

for step size h and a constant C > 0.

Proof. The exact solutions y(ti) and y(ti+1) at the nodes ti and ti+1, respectively, satisfy

y(ti+1) = y(ti) + hf (ti, y(ti)) +
h2

2
f ′ (ti, y(ti)) + C1h

3 (2.6)

for some constant C1. Therein, f ′ is a total derivative with respect to t such as

f ′(t, y(t)) = ft(t, y(t)) + fy(t, y(t))f(t, y(t)).

Then, from (2.5) and (2.6),

y(ti+1)− yi+1 = y (ti)− yi + h
{
f (ti, y(ti))− f

(
t
[ω]
i , y

[ω]
i

)}
+

h2

2
f ′ (ti, y(ti)) +C1h

3.

(2.7)
But,

t
[ω]
i = ti + (1− ω)h

and from (2.4)
y
[ω]
i = yi + (1− ω)hf(ti, yi).

Taylor’s theorem implies

f
(
t
[ω]
i , y

[ω]
i

)
= f (ti, yi) + (1− ω)hft(ti, yi) + (1− ω)hf (ti, yi) fy(ti, yi) + C2h

2

= f (ti, yi) + (1− ω)hf ′ (ti, yi) + C2h
2

for some constant C2. The last equality results from ft(ti, yi)+f (ti, yi) fy(ti, yi) = f ′ (ti, yi).
Then we have

f (ti, y(ti))− f
(
t
[ω]
i , y

[ω]
i

)
= {f (ti, y(ti))− f (ti, yi)} − (1− ω)hf ′ (ti, yi) − C2h

2.

Therefore, from the Eq. (2.7)

|y (ti+1)− yi+1| ≤ |y (ti)− yi| + h |f (ti, y(ti))− f (ti, yi))|

+
h2

2

∣∣f ′(ti, y(ti))− 2(1− ω)f ′(ti, yi)
∣∣ + |C1 − C2|h3.
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By the assumptions,

|f (ti, y(ti))− f (ti, yi))| ≤ L |y(ti)− yi|

and

f ′(ti, yi) = f ′(ti, y(ti)) + C ′ (yi − y(ti)) .

for some constant C ′.
Thus we have

|y (ti+1)− yi+1| ≤ (1 + hL) |y (ti)− yi|

+
h2

2

{
|(2ω − 1)|M + 2(1− ω)|C ′| |yi − y(ti)|

}
+ |C1 − C2|h3

≤ (1 + hL) |y (ti)− yi| + M

∣∣∣∣ω − 1

2

∣∣∣∣h2 + Ch3

for some constant C > 0. Referring to Lemma 5.8 in [2], if we set ai = |y(ti) − yi| with
s = hL and t = M

∣∣ω − 1
2

∣∣h2 + Ch3, then

t

s
=

M

L

∣∣∣∣ω − 1

2

∣∣∣∣h +
C

L
h2

and we have

|y (ti+1)− yi+1| ≤
t

s

{
e(i+1)s − 1

}
.

□

The stability of the numerical method for solving stiff problems is represented by the region
of absolute stability [11, 12] which is defined by

{z ∈ C | |ϕ(z)| < 1}

for the so-called stability function ϕ(z), with z = λh, of the method. Therein, h is a step size
and λ ∈ C, Re(λ) < 0, indicates the stiffness of the test equation y′(t) = f(t, y) = λy(t)
having the solution y(t) = eλt. In fact, it can be seen that the region of absolute stability of the
proposed method (2.5) is {

z ∈ C |
∣∣1 + z + (1− ω)z2

∣∣ < 1
}
.

Fig. 1 demonstrates the stability regions of the proposed method with respect to some se-
lected weights ω ≥ 1

2 . The case of ω = 1
2 corresponds to the midpoint method. We can see

that the area of the stability region is increasing as the weight w goes to 1. Therefore, we may
expect that the proposed method with ω > 1

2 will assure stable approximations for wider range
of the step-size h, compared with the existing midpoint method.
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FIGURE 1. The stability regions of the method (2.5) for the weights ω =
0.5(midpoint method), ω = 0.7 and ω = 0.8, compared with the Euler
method.

3. NUMERICAL EXAMPLE

To explore the availability of the proposed method, we select a typical test problem given
in the literature [2] as

{
y′(t) = 5e5t(t− y)2 + 1, 0 ≤ t ≤ 5

y(0) = −1
(3.1)

whose exact solution is y = t− e−5t.
Numerical errors of the approximates {yi+1}N−1

i=0 obtained by the proposed method (2.5),
for various step-sizes, are illustrated over the range of the weights 0.35 < ω < 0.75 in Fig.2.

The error is the l2-norm error defined by E2,h :=
√∑N−1

i=0 |yi+1 − y(ti+1)|2 associated with
the step-size h. It can be seen that the optimal value of the weight ω for each h lies on the right
hand side of the midpoint, 1

2 and it approaches to 1
2 as h goes to 0. Moreover, Table 1 includes

the l2-norm errors E2,h for the weights ω = 1
2 , ωh, ω

∗
h, where ωh := 1

2 +h and ω∗
h denotes the

optimal weight, found between 0 and 1 at 0.01 interval, with which the proposed method results
in the best error. In practice, for each h = 0.1, 0.05, 0.025, 0.00625 the optimal weight ω∗

h is
indicated by the dotted vertical line in Fig. 2. The errors of the existing midpoint method(or
the case of ω = 1

2 in the proposed method) blow up for h ≥ 0.1 whereas the proposed method
with ω = ωh, or ω∗

h shows stable error tendency.
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FIGURE 2. The l2-norm errors E2,h of the proposed method (2.5), with vari-
ous step-sizes h, for the test example (3.1) with respect to the weights over the
range 0.35 < ω < 0.75.

Figure 3 shows difference errors |yi+1 − y(ti+1)| of the approximates {yi+1}N−1
i=0 obtained

by the proposed method (2.5) with ω = ω∗
h. The errors are compared with those of the midpoint

method indicated by the thin lines. It can be seen that the proposed method with ω = ω∗
h gives

suitable errors even when the step-size is not very small (in (a)) and it provides about 1
10 times

the errors of the midpoint method, over the whole range, for a small step-size (in (b)).

TABLE 1. Optimal weights ω∗
h and the l2-norm errors of the proposed method

(2.5) with the selected weights ω = 1
2 , ωh, ω

∗
h for step-size 0 < h ≤ 1

3 (ωh =
1
2 + h).

step-size l2-norm errors with the weights
h (N) ω∗

h ω = 1
2 ω = ωh ω = ω∗

h

0.33333(15) 0.74 – – 1.8× 10−2

0.25000(20) 0.71 – 9.8× 10−2 2.0× 10−2

0.16670(30) 0.66 – 1.1× 10−2 3.8× 10−3

0.12500(40) 0.63 – 2.5× 10−3 1.1× 10−3

0.10000(50) 0.61 – 4.7× 10−3 5.4× 10−4

0.05000(100) 0.56 1.5× 10−2 2.9× 10−3 5.0× 10−4

0.02500(200) 0.53 4.4× 10−3 1.1× 10−3 4.6× 10−4

0.00625(800) 0.51 4.8× 10−4 1.5× 10−4 5.9× 10−5

(The symbol ”–” indicates that the l2-norm error blows up.)
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(a) h = 0.125(N = 40) (b) h = 0.0625(N = 80)

FIGURE 3. Difference errors, |yi+1 − y(ti+1)| of the proposed method with
ω = ω∗

h compared with the midpoint method(ω = 1
2 ) for the test example

(3.1).
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FIGURE 4. The l2-norm errors E2,h of the proposed method (2.5), with vari-
ous step-sizes h, for the test example (3.2) with respect to the weights over the
range 0.35 < ω < 0.75.

Additionally, we consider another example of the stiff equation intorduced in [13] as follows.{
y′(t) = λ(y − cos t)− sin t, 0 ≤ t ≤ π

y(0) = η
(3.2)

whose exact solution is y(t) = (η − 1)eλt + cos t. (η = 50, λ = −10)
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FIGURE 5. Difference errors, |yi+1 − y(ti+1)| of the proposed method with
ω = ω∗

h compared with the midpoint method(ω = 1
2 ) for the test example

(3.2).

Figure 4 shows numerical l2-norm errors of the proposed method (2.5) for various step-sizes.
Like the case of the previous example in (3.1), given in Fig. 2, we can see that the optimal value
of the weight ω for each h is located on the right hand side of the midpoint and it approaches
to 1

2 as h decreases to 0.
Difference errors of the proposed method (2.5) with ω = ω∗

h are illustrated in Fig. 5, which
are compared with those of the midpoint method. It can be seen that the proposed method with
ω = ω∗

h is useful even when the step-size is not very small and it provides better errors than the
midpoint method over the whole range.

4. CONCLUSIONS

In this study, we developed a one-step method with a weight 0 < ω < 1 based on the
Euler method to solve the initial value problem. The description of the proposed method is
summarized as follows.

i. When the proposed method is applied to a stiff equation, it gives stable approximation
errors even for a large step-size whereas existing standard explicit methods such as the
midpoint method blow up.

ii. Approximation error can be significantly improved by choosing appropriate values for
the weight ω around 1

2 . In fact, for a given step-size h we can find the optimal weight
ω∗
h > 1

2 , and it can be seen that the optimal weight approaches 1
2 as h decreases. There-

fore, we can conclude that the superiority of the proposed method will be emphasized
even when the step size h is not very small.
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