The behavioral mechanism underlying the traffic assignment model is a choice, or decision-making process of traveling paths between origins and destinations. The deterministic approach to traffic assignment assumes that travelers choose shortest path from their origin-destination pair. Although this assumption seems reasonable, it presumes that all travelers have perfect information regarding travel time, that they make consistently correct decision, and that they all behave in identical fashion. Stochastic user equilibrium assignment relaxes these presumptions by including a random component in traveler's perception of travel time. The objective of this study is to compare "A Model of Deterministic User Equilibrium Assignment" with "Models of Stochastic User Equilibrium Assignment" in the theoretical and practical aspects. Specifically, SUE models are developed to logit and probit based models according to discrete choice functions. The models were applied to sioux Falls net ork consisting of 24 zones, 24 nodes and 76 links. The distribution of perceived travel time was obtained by using the relationship between speed and traffic flow.
A network model and a Genetic Algorithm (GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing a non-linear objective function with the linear constraints. In the model, the flow-conservation constraints are utilized to restrict the solution space and to force the link flows become consistent to the traffic counts. The objective of the model is to minimize the discrepancies between two sets of link flows. One is the set of link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links. The other is the set of link flows those are estimated through the trip distribution and traffic assignment using the path flow estimator in the logit-based SUE. In the proposed GA, a chromosome is defined as a real vector representing a set of Origin-Destination Matrix (ODM), link flows and route-choice dispersion coefficient. Each chromosome is evaluated by the corresponding discrepancies. The population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment technique is used during the crossover and mutation.
본 연구에서는 가변수요를 고려한 확률적 사용자균형 통행배정모형을 제시한다. 교통망에서 수요와 공급간의 균형을 가정할 경우, 통행비용의 함수인 가변수요는 통행저항함수(공급함수)와 함께 균형상태로 수렴하며, 이때 확률적 통행배정모형은 통행자들간의 경로인지 통행비용이 동일해지는 확률적 사용자균형상태에 도달하게 된다. 본 연구에서 제시하는 확률적 사용자균형모형은 기존 연구들과는 달리 동적체계(dynamic system)를 기초로 개발된다. 동적체계는 시간의 흐름에 따라 하나의 상태가 다음 상태로 변화하는 과정을 표현하는 수리적인 방법으로 시간의 변화에 따라 그 상태가 변하는 여러 분야에 적용이 가능한데, 주로 제어공학(control engineering)분야에서 활용되어 왔다. 동적 체계의 개념을 도입하면, 기존 모형들과는 달리 쉽게 모형화(formulation)할 수 있으며 풀이과정(solution algorithm)도 간단하다는 장점이 있다. 본 연구에서도 동적체계를 이용하여 확률적 사용자균형 통행배정(user equilibrium traffic assignment)모형을 제시하고 제시된 모형이 안정적인 해(stable solution)로 수렴한다는 것을 Lyapunov함수를 통하여 증명한다. 또한, 예제 교통망을 통하여 여러가지 의미있는 결과를 도출한다.
This study is a generalization of 'stable dynamics' recently suggested by Nesterov and de Palma[29]. Stable dynamics is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with user equilibrium model that is common in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on the congestion. Therefore it is expected to be an useful analysis tool for transportation planners. An equilibrium in stable dynamics needs only maximum flow in each arc and Wardrop[33] Principle. In this study, we generalize the stable dynamics into the model with multiple traffic classes. We classify the traffic into the types of vehicle such as cars, buses and trucks. Driving behaviors classified by age, sex and income-level can also be classes. We develop an equilibrium with multiple traffic classes. We can find the equilibrium by solving the well-known network problem, multicommodity minimum cost network flow problem.
In this paper, we propose a parametric optimization approach to simultaneously determining trip distribution, mode choice, and user-equilibrium assignment. In our model, mode choice decisions are based on a binomial logit model and passenger and cargo demands are divided into appropriate mode according to the user equilibrium minimum travel time. Underlying network consists of road and rail networks combined and mode choice available is auto, bus, truck, passenger rail, and cargo rail. We provide an equivalent convex optimization problem formulation and efficient algorithm for solving this problem. The proposed algorithm was applied to a large scale network examples derived from the National Intermodal Transportation Plan (2000-2019).
혼잡한 교통네트워크에서 조사된 통행량으로부터 확률적 사용자 평형을 이루는 통행분포와 통행배정을 동시에 구하기 위한 네트워크 모델과 유전알고리즘을 제안하였다. 확률적 사용자 평형을 이루는 모델은 선형제약을 가진 비선형 목적함수를 최소화하는 문제로 정식화하였다. 네트워크 모델에서는 해의 탐색공간을 줄이고 조사된 통행량을 만족시키기 위해서 흐름보존제약을 활용하였다. 목적함수는 흐름보존, 통행발생량, 통행유입량, 조사통행량 등의 제약을 만족하는 링크통행량과, 경로통행배정을 통하여 구한, 확률적 사용자 평형을 이루는 경로통행량을 만족하는 링크통행량의 차이를 최소화하는 것으로 정식화하였다. 제안된 유전알고리즘에서 유전자는 통행분포, 링크통행량, 여행비용계수 등을 나타내는 벡터로 정의하였다. 각 유전자는 목적함수의 값으로 구한 적합도에 따라 평가되며, 병행단체교차와 돌연변이에 의하여 진화한다.
통행배정 (traffic assignment)은 장래 통행수요를 예측할 뿐 아니라. 교통혼잡을 완화시키는 각종 교통정책들을 사전에 평가하는 도구로 그 활용범위가 넓어지고 있다. 현재 대표적인 통행배정방법은 Wardrop(1952)이 제시한 사용자 균형원리 (user equilibrium principle)에 따라 통행자를 교통망에 배정하는 방법으로 동등 수리최소화모형 (equivalent mathematical minimization model), 변동부등식 (Variational inequality), 비선형상보문제 (Nonlinear Complementary Problem), 고정점 모형(fixed point method) 등이 있다. 그런데, 최근 Jin(2005a)은 동적과정(dynamic process)에 기초하여 사용자 균형해를 구할 수 있는 새로운 모형을 제시하였다. 본 연구는 Jin이 제시한 모형에 대한 효과적인 알고리듬을 개발하고 이를 평가하는 데 연구의 목적이 있다. 개발된 알고리듬은 통행배정모형을 풀기 위하여 현재 널리 사용되는 Frank-Wolfe방법보다 쉽게 프로그램화 할 수 있는데, 목적함수를 평가(evaluation)하는 단계가 불필요하며 축차적인 계산과정을 통하여 해를 구하기 때문이다. 제시된 알고리듬을 예제 교통망을 대상으로 분석한 결과, 사용자 균형해(user equilibrium)를 도출함을 확인할 수 있었다.
This study developed a variable demand traffic assignment model by stable dynamics. Stable dynamics, suggested by Nesterov and do Palma[19], is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with the user equilibrium model, which is based on the arc travel time function in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on congestion. It is therefore expected to be a useful analysis tool for transportation planners. In this study, we generalize the stable dynamics into the model with variable demands. We suggest a three stage optimization model. In the first stage, we introduce critical travel times and dummy links and determine variable demands and link flows by applying an optimization problem to an extended network with the dummy links. Then we determine link travel times and path flows in the following stages. We present a numerical example of the application of the model to a given network.
Traffic signal setting policies and traffic assignment procedures are mutually dependent. The combined signal control and traffic assignment problem deals with this interaction. With the total travel time minimization objective, gradient based local search methods are implemented. Deterministic user equilibrium is the selected user route choice rule, Webster's delay curve is the link performance function, and green time per cycle ratios are decision variables. Three implemented solution codes resulting in six variations include intersections operating under multiphase operation with overlapping traffic movements. For reference, the iterative approach is also coded and all codes are tested in four example networks at five demand levels. The results show the numerical gradient estimation procedure performs best although the simplified local searches show reducing the large network computational burden. Demand level as well as network size affects the relative performance of the local and iterative approaches. As demand level becomes higher, (1) in the small network, the local search tends to outperform the iterative search and (2) in the large network, vice versa.
교통시설 투자사업의 편익을 추정하는데 있어서 여러 요인에 의해 오차가 존재할 수 있는데, 본 연구에서는 이용자 균형 통행배정모형과 종료기준을 대상으로 하여 분석을 수행하였다. 선행 연구결과 이용자 균형 통행배정 모형 이용시 통행배정모형의 종료기준 중 하나인 Relative Gap(RG)에 따라 통행시간 절감편익이 크게 달라질 수 있는 것으로 나타났다. 모형의 종료조건을 보다 엄격하게 적용할수록 결과값을 도출하는데 소요되는 시간이 기하급수적으로 증가하게 되므로 마냥 종료조건을 강화하는 것이 최선의 해결책은 아닌 것으로 판단된다. 따라서 이러한 변동률을 줄이고 편익추정 결과의 안정성을 향상시키기 위한 방안의 강구가 필요하다. 이에 본 연구에서는 통행배정 결과를 이용한 편익추정의 안정성 제고를 위해 편익산출 대상링크를 축소시키는 방안, 영향권에 대해 추출한 Sub-Area O/D 및 Network을 이용하는 방안, 통행배정 결과의 평균값을 이용하는 방안의 세가지 방안을 살펴보았다. 분석 결과 연속된 통행배정 결과의 5회 평균값을 이용하되, 편익의 규모에 따라 종료기준을 달리하는 방안이 가장 적정할 것으로 판단되었다. Sub-Area O/D 및 Network을 이용하는 방안의 경우 모형의 크기가 작아질수록 수렴속도는 향상되나 편익추정 결과가 과대 혹은 과소할 수 있는 것으로 나타났다. 본 연구에서 분석한 결과는 전국 단위의 O/D 및 Network을 이용하여 첨두시를 대상으로 하였으며, 사용하는 기초자료가 달라지거나 혼잡도가 다를 경우 적정 기준은 달라질 수 있다. 향후 5대 광역권 자료나 수도권 자료에 관한 분석 또한 필요할 것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.