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ABSTRACT

Traffic signal setting policies and traffic assignment procedures are mutually dependent.
The combined signal control and traffic assignment problem deals with this interaction.
With the total travel time minimization objective, gradient based local search methods are
implemented. Deterministic user equilibrium is the selected user route choice rule,
Webster's delay curve is the link performance function, and green time per cycle ratios are
decision variables. Three implemented solution codes resulting in six variations include
intersections operating under multiphase operation with overlapping traffic movements.
For reference, the iterative approach is also coded and all codes are tested in four example
networks at five demand levels. The results show the numerical gradient estimation
procedure performs best although the simplified local searches show reducing the large
network computational burden. Demand level as well as network size affects the relative
performance of the local and iterative approaches. As demand level becomes higher, (1) in
the small network, the local search tends to outperform the iterative search and (2) in the

large network, vice versa.

This paper is based on Chungwon Lee's Ph.D. dissertation.
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INTRODUCTION

From the transportation planning perspective, traffic assignment models are used
to forecast network flow patterns, commonly assuming that capacities decided by network
supply parameters such as signal settings are fixed during a short time period with a given
particular origin-destination matrix (OD). On the other hand, from the transportation
engineering perspective, network flow patterns are commonly assumed fixed during a
short time period and control parameters are optimized in order to improve some
performance index for prevailing flow patterns. The input flow patterns must either be
observed or forecasted through traffic assignment.

The two processes, traffic assignment and signal optimization, are usually dealt
with separately; however, the processes mutually influence each other. This mutual
interaction can be explicitly considered by effective integration of these two processes,
producing the so-called combined control and assignment problem. When drivers follow
Wardrop’s first principle (1), i.e., user equilibrium (UE) flow, the problem is called the
equilibrium network traffic signal setting problem, which is normally nonconvex and
obtaining explicit gradient information for any gradient based algorithm application is
difficuit.

Signal setting parameters consist of several decision variables such as green time
per cycle ratios, cycle length, phase sequence and offset. Most models optirnize a subset
of these decision variables assuming the others and traffic demand to be fixed. Changing
signal settings may stimulate drivers to adjust route choices; however, changing flow may
suggest re-setting signals. Allsop (2) first noted the necessity of combining signal
calculations and traffic assignment by pointing out that network traffic routing according
to Wardrop’s first principle is dependent on signal timings and should ideally be regarded
simultaneously with signal timing. Gartner (3) supported the same point. Allsop

suggested an iterative procedure to solve such a problem, which decomposed the problem
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into two well-researched subproblems as in Figure 1. The assignment uses link
performance functions derived by the signal optimization subproblem.  Signal
optimization is performed with flow patterns provided through the assignment
subproblem. In the literature, this is called the iterative optimization and assignment
(IOA) procedure, or simply iterative approach (4,5). The procedure continues until it
converges to a solution, which is called mutually consistent because the flow is at UE and
the signal setting is optimal. Allsop’s conceptual algorithm was extended by Allsop and
Charlesworth (6), in which the signal optimization is solved by TRANSYT (7). Allsop
and Charlesworth carried out the procedure on a six-intersection network. Quite distinct
mutually consistent solutions, i.e., different flow and green time patterns, were found but
indicated similar total network travel times. Tan et al. (8) expressed UE flow pattern as a
set of constraints and suggested an Augmented Lagrangian Method for solutions.
However the method is inappropriate for large networks because of path enumeration.
Dickson (9) and Smith (10) noted that the above iterative method is not
guaranteed to converge even to a local optimum. Sheffi and Powell (/1) suggested a
local search methodology and solved a small network problem with a simplified link
performance function. Smith (I2) proposed a new signal control policy Pg with a
capacity maximizing property, which is different from conventional delay minimization
or Webster’s equisaturation policy (/3). Smith and Van Vuren (I4) analyzed the
convergence and uniqueness of solutions by the iterative approach for a large collection
of control policies. They showed that the link performance functions and the control
policies affect the convergence and uniqueness of mutually consistent solutions. Van
Vuren and Van Vliet (15) performed a comprehensive experimental study. Cantarella et
al. (16) described the behavior of the iterative procedure graphically. Cantarella and
Sforza (17) included an offset optimizer in the iterative procedure. Gartner and Al-Malik
(18) introduced a simultaneous approach for both route choice behavior and optimal

signal setting by representing signal control variables as equivalent flow variables at two

_91_



phase operating intersections. Yang and Yagar (19) developed a gradient descent
algorithm to utilize the sensitivity analysis procedure. Cascetta et al. (20) implemented
gradient based algorithms with stochastic equilibrium assignment.

The equilibrium network traffic signal setting problem is known to be not
necessarily convex and therefore it may have multiple local solutions. Thus, there is a
possibility that some local and mutually consistent solutions show very poor performance
compared to global solutions. Recently, the authors implemented two stochastic global
optimizations, simulated annealing and a genetic algorithm, and presented preliminary
test results for exploring whether local and iterative approaches severely impair solution

quality (21, 22).

NOTATION

Symbol Definition

CL cycle length,

A, green time ratio for intersection link or movement a,

S, saturation flow rate for intersection link or movement a,
t, travel time on link or movement a,

to free flow travel time of nonintersection link,

X, ﬂowlon link or movement a.

OBJECTIVES, ASSUMPTIONS AND FORMULATION

Objectives

The main objectives of this study are to implement and extend Sheffi and Powell’s

gradient based local searches to be able to solve complex signal schemes in large
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networks. Additionally, the objectives include comparing the local searches with the
iterative approach at different demand levels and in different size networks regarding
solution quality and convergence pattern, and testing the simplified gradient estimation

procedure to see if it can reduce the computational burden without losing solution quality.
Assumptions

To keep the problem manageable, the following assumptions are made.

* The control policy for signal settings is total travel time minimization.

» Traffic assignments are steady-state with fixed OD. The driver route choice rule
is minimum time path selection so that drivers follow deterministic UE. The
Frank-Wolfe algorithm (23) is used to solve the UE flow problem.

» The following Webster's two-term delay function is selected for intersection

delay modeling and link cruise time is assumed constant.
CL-s(1— }»)2 X
t= +
2(s -x) 25 Ms-A—x)

(H

Webster's delay function is incompatible with the Frank-Wolfe algorithm when
flow exceeds capacity since the algorithm contains a series of all-or-nothing
assignments, which may cause flows on some links to be more than their
capacities during the iterations. Thus, link costs must be defined throughout the
whole flow region. The linear adaptation to combine deterministic queueing
and Webster's curve at some flow level where the two curves show the same
slope as in Figure 2 is chosen to resolve this probiem.

* Only networks with isolated signal control are investigated since including the
offset effect analytically into the theoretical relationships between flow and

control parameters has not yet been properly resolved. Green time is the design
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signal parameter and cycle length is assumed fixed. All phases are protected

and phase sequences are €X0genous.

Formulation

The policy to minimize the total travel time induces the following equilibrium

network traffic signal setting problem, P1.

P1:

z2=3t,(x,,1,) X, (22)
a

subject to:

AR <) < pm (2b)

x ~UE (2c)

x20 and A 20 (2d)

* *
Since there is a unique feasible equilibrium flow vector X for any feasible A, i.e., X is

uniquely decided by A, P1 can be transformed to P2.

P2:

2=3t, (K (WA, ) 1) (3a)
a

subject to:

AT < ), < g (3b)

Xx20 and A 20 (3¢)

For simplicity, x" will be denoted by Xx. Two difficulties in solving P1 or P2 have been

frequently mentioned (24). First, due to the problem nonconvexity, z may have many

local minima. Thus, any gradient-based search will find only a local minimum. Second,

z requires knowledge of the OD pattern, which is not easily developed for large realistic

networks. The iterative approach has been the most practical alternative strategy.

LOCAL SEARCH
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Analytical Method

When performing a local search for P2, computing the gradient of z must be

considered first. Typical terms of the gradient of z are given by

o) _ Z{[ (x a(A),Aa)+xa()»)ata(xaa’xa)]axa()")}+xk(l)-m—) @)

oA k a ox oA k oA k

ox
The term 577 is the partial derivative of the equilibrium flow on a link with respect to
k

the green split on another. Because it is not possible to derive this term analytically,

Equation 4 is very difficult to use directly. Sheffi and Powell suggested an approximate

method as
axa(k)zxa(...,lk + Ao )—Xg (onsy,..l) 5)
oA, Ay

dx,
Equation 5 numerically approximates ——— by the relative equilibrium flow change on

oAy
link a to the green split change on link k. In Equation 4, one more noticeable term is

Jz
It could affect —— severely and give very different values depending on the A

tx
Ny My

location due to the linear adaptation of Webster’s curve. Here two different methods can

be devised:
tx
* Derive and use the analytical form of —— 7y (6a)
k }
Jt ty (AL +A) =t (A
* Use a numerically approximate method: k = k( k ) k( k) (6b)

Ay A
Numerical Method

The above expressions contain both analytical and numerical terms. Thus it is
also natural to use a full version of numerical gradient estimation to avoid bothersome

differentiation of some complex delay functions 'as,
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aZ ~ Z(...,A.k +A,...)—'Z(...,A,k ,) (7)
P A

Simplified Method

To obtain gradient information, the above two methods need at least one
equilibrium assignment iteration for every stage, which is inefficient as the network size
grows. Sheffi and Powell suggested, although not tested in their work, a simplified
gradient approximation for a large network by assuming that the main gradient portion of

stage k comes from stage k itself as follows:

dta()) oxal) At () 9xk()
a§k[ta(-,-)+xa- = J N {« [tk(-,-)+xk- I, J P, { ®)

a

As Sheffi and Powell explained, this conjecture may be accurate because of two reasons:
ox k () axa ()

6)) >>

oAy oAy

for a #k, since the network structure may tend to absorb changes;

and (2) the terms in the sum in the left-hand side of Equation 8 may be of undetermined
signs and may, therefore, cancel each other. Based on this idea, Sheffi and Powell
suggested a simplified procedure to estimate all the gradient information by one new
equilibrium assignment as follows:
e STEP 1: Perturb A so all the splits have been increased by A,
A=A, +AA, +AA +A,.)
* STEP 2: Perform one new equilibrium assignment with A"

* STEP 3: Compute partial derivatives by

oz ~ 8zk (A.) _ atk axk atk
e - Oy ‘[ S v P T ©)
iy _ X A)-x(A) oy : :
where o = A o is either in the analytical or numerical

0
form as in Equation 6. Additionally _Eﬁz_ can be numerically estimated as
k



9z__ 0z _ z, (M) -z, (M)
oA, Oy A

(10)

This procedure would therefore greatly reduce the computational burden of gradient
estimation for large networks. Naturally, however, such a procedure may not be
guaranteed to converge to any minimum. Sheffi and Powell hypothesized that in large
networks the results may be close to the true local minimum. The experiment to justify
this argument has not yet been reported in the literature.

In summary, three different local searches depending on gradient calculation

oty .
method are implemented: "analytical”, "numerical” and "simplified.” In addition, —£ s

My
evaluated in two ways: analytically or numerically. Therefore, three different estimations

at
and two different -éxk— evaluation techniques constitute six combinations as in Table 1.
k

Local Search Algorithm

The local search algorithm is summarized as follows:
» STEP 0: (Initialization) Obtain feasible splits, and set n=0.
» STEP 1: (Updating) Calculate travel time for given splits and perform UE

assignment.

» STEP 2: (Gradient) Calculate a): .
_* STEP 3: (Descent direction) Decide descent direction and maximum step size.
* STEP 4: (Step size determination) Find an optimum step size and update splits.
 STEP 5: (Convergence test) Return to STEP 1 until stopping criterion is met.
An initial signal setting is used to find initial UE flow. Then, gradient is calculated, and
descent direction (d) and an optimum step size are determined with the gradient

projection method to maintain feasibility. The search stops when d is close to zero, n

becomes the maximum iteration, or change of green splits is minimal.
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Chain Rule for Complex Multiphase Operations

oz
oA,

The gradient is the rate of total travel time change with respect to the green

time ratio change of movement a. In signal control, however, green time can be changed
stage by stage, rather than movement by movement. Thus, when the signal control is
complex, such that one movement receives green during more than one stage, a stage

gradient is actually required. By the chain rule, the stage gradient can be calculated with

Equation 11.
oz
d, = 11
‘ aezét axa ( )

where d, is the gradient of stage t and S; is a set of the movements that receive green

during stage t. To save space, the detailed proof is omitted. Finally, when an intersection
has N stages, at least one stage green time ratio should be decided by the other N-1 stages.

The former and the latter will be called dependent and independent stage(s), respectively.
Relation between Local and Mutually Consistent Solutions

It is useful to clarify why the local and mutually consistent solutions are different

before the numerical results are given. Imagine a network with two independent

variables: x and A. Now, denote the system objective function z(A,x) as contours in the
(?», x) space in Figure 3. Then, two imaginary curves can be defined:

* Curve P: the signal optimization with an input flow x such as A = P‘[X). |

* Curve E: the UE assignment with a fixed green split A such as xyg = E(A).
In Figure 3 (a), z" is the optimum with UE flow, and Z¢ is a so-called mutually
consistent point: here X¢ is UE when the signal is fixed at Ac and A is optimal when

flow is fixed at xc. z  and Zc can be identical but naturally will be different, and
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usually Z* cannot be worse than Zc. This relation may not be true, however, if there are

multiple valleys, caused by the nonconvexity problem, as in Figure 3 (b). When Z and

*
zc are located in different valleys, z can be worse than zc. For a large network,

obtaining a global optimum among many local optima is not an easy task.
EXPERIMENT
Network Representation

To explicitly model directional movements, intersections are coded as a set of
links, representing all possible movements from the upstream approaches as shown in
Figure 4. Meneguzzer (25) used this representaﬁon. In the figure, links serving
intersection turning movements are called "intersection links" (see "a") while others (see

"b") are called "nonintersection links."
Experimental Scheme

To compare with the local solutions, the IOA procedure is implemented. Signal
setting is optiﬁﬁzed utilizing the pressure concept in Smith et al. (26). Different control
optimization pblicies will find different mutually consistent points. Smith (12) devised
the so-called P, policy and its variations. According to Van Vuren and Van Vliet (15),
no superior policy was found over different OD levels. In this study, total time
minimization is the selected control policy of the IOA.

To test the IOA and six variations of three local searches, four example networks
in Figure 5, 6 and 7 were chosen. Figure 5 contains two simple networks denoted by
"VV", and "2x1." Figure 6 is a medium size network denoted by "MED", having 10 zone

centroids and 11 signalized intersections with multiphase operation and overlapping
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movements, 40 total phases, 108 intersection links and 158 total links. Figure 7 is a
network located in Austin, Texas, USA, denoted by "AST", consisting of 21 zone
centroids and 27 signalized intersections with multiphase operation and cverlapping
movements, 83 total phases, 267 intersection links and 323 total links.

Network congestion can affect the relative performance of the algorithms. Five
different OD demand levels from 1 to 5 are selected so that their network wide volume
per capacity ratios show 0.1, 0.3, 0.5, 0.7 and 0.9, respectively. Initial control setting is
an important factor of solution quality because of the nonconvexity. Thirty-two different
initial settings are selected. Simplified local searches are not applied for the two simple
networks since they are originally devised for bigger networks. Therefore the experiment
has 3520 total cases:

* VV: 640 = 4(codes)- 5(demandlevels)- 32(initialsettings)

« 2x1: 640 = 4(codes)- 5(demandlevels)- 32(initialsettings)

« MED: 1120 = 7(codes)- 5(demandlevels)- 32(initialsettings)

* AST: 1120 = 7(codes)- 5(demandlevels)- 32(initialsettings)

« Total cases: 3520 = 640 + 640+1120 +1120
When any numerical approximation is involved for gradient calculation, A is set to 0.05,
which means 3 seconds when the cycle length is 60 seconds. If A is too small, the
derivative estimate is subject to roundoff noise; whereas if A is too large, it no longer

measures the local gradient. According to the test, 3 seconds was an appropriate A value.
Experiment Results

Means of total travel times are summarized in Table 2 and Figure 8. For the VV
and 2x1 networks, the numerical local search is overall superior or comparable to the two

analytical local searches and IOA at all demand levels. For the VV network, at high

demand levels, the numerical local search outperformed the IOA, which was a bit weaker
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in the 2x1 network. For the MED and AST networks, again the numerical local search
performed better than other local searches but was outperformed by the IOA at high
demand levels. According to the paired t-test, the solutions of the IOA and local searches
were significantly different at high demand levels (4 and 5) showing p-values less than
0.005. This relative performance that the IOA is superior at high demand in a large
network while local searches are superior at high demand in a small network is illustrated
in Figure 9 and can be ascribed to the following:
When the network is small, there may be very few distinct local solutions, which
can be found by local searches. Although the mutually consistent solution is
intrinsically suboptimal, it is quite similar to the local solutions when demand
level is low, and as demand grows, the difference grows. On the other hand, for
the large network, there may be many local or quasi-local solutions. Thus, any
local search can be easily trapped to worse solutions if the initial solution is not in
a good domain neighborhood. Since the IOA includes a signal optimization
procedure, it finds a good solution showing small total travel time, which may not
be mutually consistent until convergence, whether the initial solution is in a good
domain neighborhood or not. Then the search drifts to find a mutually consistent
point. When the network is large and demand is high, there may be many
mutually consistent points so finding one around the signal optimized point is
likely.
The simplified local searches do not impair the solution quality much as shown in
Table 2 for the MED and AST networks, and do not significantly increase iterations as
shown in Table 3. Moreover, they reduce total UE repetitions compared with their
regular local searches, (i.e., simplified-A vs. analytical-A, simplified-B vs. analytical-B
and simplified-C vs. numerical). Therefore, when fast computing is required, this method
can be tested as an alternative. Generally searches using numerical gradient estimation

work better than those containing analytical components.
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Regarding convergence, most local searches take 2 to 4 iterations to converge
while the JOA averages 5 to 15 iterations as shown in Table 3. Figure 10 shows the
objective value improvement versus the iteration number of the local and IOA
procedures. Although the IOA requires a bit more iterations, the UE iterations involved
in the optimum step size decision of the local searches are not negligible as shown in
Table 3. To reduce this local search computational burden, many search algorithms
utilize a streamlined method such as a predetermined step size or a limited maximum
number of line searches. This study, however, does not include these. On the other hand,
the IOA also involves a line search for optimal green swapping decisions in the control

optimization procedure, which can be efficiently performed.

CONCLUSION

The combined control and assignment problem is examined focusing on two
different approaches, gradient based and iterative approaches, under a planning (off-line)
perspective.  Sheffi and Powell’s gradient based local search algorithm has been
implemented in three different codes. To include different gradient estimation methods
for Webster’s curve, six cases by the three codes were investigated. The iterative
approach was also coded to compare the solution quality.

According to the comprehensive experimental test, a full version of the numerical
local search showed relatively superior performance compared to the analytical local
searches. When the network was small, the iterative and local searches found good
solutions simultaneously, but only for low demand levels. When demand was high, the
iterative approach failed to produce good solutions. On the other hand, when the network
was large, as demand level became higher, the iterative approach tended to find better

solutions.
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Simplified gradient estimation local searches showed fairly good performance as
well as computational efficiency. The UE repetitions involved in the optimal step size
decision of local searches are not negligible and should be further examined to improve
efficiency. Because of the nonconvexity, finding a (near) global optimum using any local
search is very difficulty in large networks. Thus, further research is in progress
investigating the necessity and applicability of the global search with simulated annealing

and a genetic algorithm.
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TABLE 2 Means of Total Travel Times (hr) of IOA and Local Searches at the Five

Demand Levels

N/W | OD | IOA |analytical local search | numerical simplified local search
A B local search | A B C
\'AY% 1 6 6 6 5 N/A  N/A NA
2 21 22 23 21 N/A NA NA
3 46 42 40 39 N/A NA N/A
4 84 56 63 56 N/A NA N/A
5 172 108 120 80 N/A  N/A NA
2x1 1 4 5 5 4 N/A  NA NA
2 15 15 35 14 N/A NA NA
3 25 28 139 25 N/A NA NA
4 43 179 324 45 N/A  N/A NA
5 83 332 571 80 N/A  NA NA
MED | 1 33 36 36 36 36 36 36
2 131 146 148 144 145 149 147
3 274 330 365 324 346 361 329
4 657 779 921 788 788 962 825
5 1398 1705 1921 1781 1721 2105 1799
AST 1 147 155 156 155 155 155 155
2 555 596 610 595 602 612 599
3 1030 1265 1421 1250 1261 1421 1259
4 1838 2503 2771 2624 2521 2997 2625
5 3345 5521 6003 5487 5467 5799 5203
best across
algorithms
TABLE 1 Local Search Techniques and Acronyms
oty
Gradient estimation method a_xk— estimation | Acronym Na
analytical — analytical-A S
analytical calculation by Equation 4 or
numerical — analytical-B
numerical calculation by Equation 7 not needed — numerical S
analytical — simplified-A |1
analytical calculation by Equation 9 or
' numerical — simplified-B
or
numerical calculation by Equation 10 not needed — simplified-C

aNeeded equilibrium assignment numbers to obtain an entire gradient where S is the
number of independent stages of the network.
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TABLE 3 Average Number of Iterations and UE Assignment Repetitions until

Convergence?
N/W | IOA analytical local search | numerical simplified local search
A B local search | A B C
VvV 137,37 35,67 26, 104 |3.1, 93 N/A N/A N/A
2x1 4.1, 4.1 35, 105 21,75 |[5.1, 209 N/A N/A N/A
MED| 8.3, 8.3 2.8, 103 20, 82 |3.0, 90 29,51 20,53 27,90
AST | 14.7, 147 |1 3.0, 154 2.0, 104 |3.0, 139 3.0, 47 2.0, 50 29, 93

a(average iteration to converge, average UE repetitions)

assignment

flows
- ®1 signal optimization

signal setting

FIGURE 1 Iterative optimization and assignment procedure.

-

average delay

Webster's curve

modified
Webster's curve

deterministic
oversaturation curve

1.0 ver

FIGURE 2 The modified Webster’s curve.
(Source: Van Vuren and Van Vliet (1992); reprinted with minor amendments)
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FIGURE 3 Local (z*) and mutually consistent point (z¢).

- 109 -



a: intersection link
g b: nonintersection link

FIGURE 4 Detailed intersection representation.
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(a) a simple network from Van Vuren and Van Vliet (1992) ("VV")

CL =60sec @ 2
™ =0.01 "3
s =2000vph Amx =099 (4
dist = 0.94km
speed =56.4km / h
t, =60.0sec s =4000vph
dist =1.58km
) bypass speed = 80.3km / h
A t, =70.8sec

(b) another simple network with two intersections ("2x1")

D
CL =60sec pathA—>1—B
A™R — .01 s = 2000vph
AEX _ (9 99 t, =15sec for each link
4~:: B
pathC—>2—-51-5D pathA—2—>B
s = 4000vph s =4000vph
t, =10sec for each link| O |t, =10sec for each link
Cc

FIGURE 5 Two simple example networks denoted by VV and 2x1.
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FIGURE 6 A medium size network denoted by MED.
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FIGURE 7 A subnetwork from the city of Austin, Texas, USA, denoted by
AST.
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MED network
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_g 2000 +
% 1500 +
> 1000 +
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]
*é 0

0

demand level
AST network

. 7000 ‘
£ 6000 + I0A .
g 5000 + — analyt!caLA
= 4000 + - = analytical-B
2 3000 <+ = = = numerical
g 2000 + - - s?mpl:rffed-A
_,g 1000 + - -4 - simplified-B
- 0 e T simplified-C

0

demand level

FIGURE 8 Means of total travel times by the codes, four networks and five demand
levels.
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FIGURE 9 Relative superior region of two searches with respect to
demand level and network size.
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FIGURE 10 Convergence pattern of the IOA and numerical local
search by relative objective value reduction between iterations for the
2x1 network at OD level 3.
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