• 제목/요약/키워드: upright control

검색결과 84건 처리시간 0.026초

ZMP Compensation Algorithm for Stable Posture of a Humanoid Robot

  • Hwang, Byung-Hun;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2271-2274
    • /
    • 2005
  • The desired ZMP is different from the actual ZMP of a humanoid robot during actual walking and stand upright. A humanoid robot must maintain its stable posture although external force is given to the robot. A humanoid robot can know its stability with ZMP. Actual ZMP may be moved out of the foot-print polygons by external disturbance or uneven ground surfaces. If the position of ZMP moves out of stable region, the stability can not be guaranteed. Therefore, The control of the ZMP is necessary. In this paper, ZMP control algorithm is proposed. Herein, the ZMP control uses difference between desired ZMP and actual ZMP. The proposed algorithm gives reaction moment with ankle joint when external force is supplied. 3D simulator shows motion of a humanoid robot and calculated data.

  • PDF

도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어 (LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제23권1호
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

최적제어 기법을 이용한 밸런싱 로봇 제어기의 설계 (Design of Balancing Robot Controller using Optimal Control Method)

  • 여희주;박훈
    • 전자공학회논문지
    • /
    • 제51권2호
    • /
    • pp.190-196
    • /
    • 2014
  • 본 논문에서는 밸런싱 로봇의 동역학적 모델의 해석으로부터 기울기와 조향이 독립되어 있어 서로 영향을 받지 않는 것을 증명하고, 다변수 시스템에 적합한 제어기로써 두 개의 최적 LQR 제어기 구조를 갖는 제어시스템을 제안하였다. 또한 제안한 제어시스템의 성능을 입증하기 위하여 밸런싱 로봇의 자세제어에 적용하여 모의실험과 실험을 수행하였고, PID 제어기와의 비교평가를 통하여 그 우수성을 검증하였다.

방파제 기초 mound부의 반사파 제어기능에 관한 연구 (Wave Reflection Control Functions of Mounds for a Foundation of Breakwaters)

  • 류청노;김종인
    • 한국수산과학회지
    • /
    • 제20권4호
    • /
    • pp.370-378
    • /
    • 1987
  • Wave reflection control functions of mound for the foundation of composite and perforated break-waters were investigated through the theoretical considerations. The theory developed is based on a simple summation of components of reflected waves. The applicability of the theory is assured by the comparative studies of the theoretical calculation and experimental data on the sea surface elevation in front of a breakwater. It is found that the reflection is mainly controlled by depth and width of the mound. In the design of composite type perforated breakwaters, the width of perforated part of the upright section can be decreased to less than half of the conventional design width for the same reflection by using the reflection control function of mound part and the reflection can be reduced until less than $30\%$ of that in the composite breakwaters. Using the results, a design method of mounds is proposed, by which the reduction of wave reflection is assured under the given wave conditions.

  • PDF

Effect of Kinesiology Taping of the Middle Back on Static Balance in Hemiplegic Stroke Patients: A Pilot Study

  • Kim, Bokyung
    • 국제물리치료학회지
    • /
    • 제12권2호
    • /
    • pp.2354-2358
    • /
    • 2021
  • Background: Stroke is a neurological disorder characterized by an impaired static balance. A change in poor posture after stroke may worsen static balance. The balance control through an upright posture may include kinesiology taping of the middle back. Objectives: To investigated the effect of kinesiology taping of middle back on static balance in patients with stroke. Design: A randomized controlled trial. Methods: A total of 10 patients with stroke were divided into two groups. The experimental and control groups received kinesiology taping and placebo taping of the middle back, respectively. After 24 h, static balance (i.e., sway area and path length) was measured in closed eyes condition. Results: The experimental group (kinesiology taping group) showed a significant decrease in sway area and path length after the intervention. In addition, kinesiology taping group showed a significant decrease in sway area and path length compared to the control group. Conclusion: Kinesiology taping of the middle back can improve static balance in stroke patients.

Swinging-up the Rotational Inverted Pendulum with Limited Sector of Arm Angle via Energy Control

  • Nundrakwang, Songmoung;Cahyadi, Adha I.;Isarakorn, Don;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2116-2119
    • /
    • 2005
  • Inverted pendulum is a classical example and a famous tool for testing the effectiveness of many control schemes. Owing to their nonlinearity and unstable characteristic, a controller development either for swinging-up or stabilizing its upright position had been a great interest of many researchers. In this paper, the swinging-up control of the inverted pendulum using energy control will be presented. However, the saturation function in its control law could harm the experimental equipments. In addition, this swinging-up method did not consider limited sector of the arm angle to avoid another hazard, for instance, the twisted cable in the apparatus. Therefore, in this paper the position control of the arm angle using simple PD control in accordance with the energy control is proposed. Consequently, the limited arm sector angle can be achieved and the saturation function can also be replaced effectively by the PD control.

  • PDF

선형외란에 대응하는 인체의 자세응답 해석 (Human Postural Response to Linear Perturbation)

  • 김세영;박수경
    • 대한기계학회논문집A
    • /
    • 제33권1호
    • /
    • pp.27-33
    • /
    • 2009
  • Human postural responses appeared to have stereotyped modality, such as ankle mode, knee mode and hip mode in response to various perturbations. We examined whether human postural control gain of full-state feedback could be decoupled along with the eigenvector. To verify the model, postural responses subjected to fast backward perturbation were used. Upright posture was modeled as 3-segment inverted pendulum incorporated with feedback control, and joint torques were calculated using inverse dynamics. Postural modalities such as ankle, knee and hip mode were obtained from eigenvectors of biomechanical model. As oppose to the full-state feedback control, independent eigenvector control assumes that modal control input is determined by the linear combination of corresponding modality. We used optimization method to obtain and compare the feedback gains for both independent eigenvector control and full-state feedback control. As a result, we found that simulation result of eigenvector feedback was not competitive in comparison with that of full-state feedback control. This implies that the CNS would make use of full-state body information to generate compensative joint torques.

적응 퍼지 제어기를 이용한 도립진자의 제어 (A Study on the Adaptive Fuzzy Control of an Inverted Pendulum)

  • 이동빈;고재호;유창완;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.687-689
    • /
    • 1998
  • This paper represents fundamental developments in Fuzzy and Neural approaches. The Fuzzy Controller(FC) and plant are cascaded in Adaptive framework. Each of which produces its outputs. The adjustable parameters all pertain to the fuzzy controller is implemented as an Adaptive FC to adjust the environments of the plant. There is an error meaure block which is a difference between the actual state and desired state. We introduce error back propagation algorithm in neural method. To speed up convergence, we follow a steepest decent in the sense that each parameter set update leads to a smaller error measure and is learned by this methodology. Inverted pendulum is a typical testbed to measure the effectiveness of nonlinear control system. finally we simulated the adaptive fuzzy controller to be able to bring back to the upright position of the its angle and angular velocity.

  • PDF

전방향 셀프-밸런싱 로봇휠체어 개발 (Development of a Omni-directional Self-Balancing Robot Wheelchair)

  • 유재림;박윤수;김상태;권상주
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.229-237
    • /
    • 2013
  • In this paper, we report a self-balancing robot wheelchair which has the capability of keeping upright posture regardless of the terrain inclination in terms of the three dimensional balancing motion. It has the mobility of five degrees of freedom, where pitching, yawing, and forward motions are generated by the two-wheeled inverted pendulum mechanism and the rolling and vertical motions are implemented by the movement of the tilting mechanism. Several design considerations are suggested for the sliding type vehicle body, wheel actuator module, tilting actuator module, power and control system, and the riding module.

멀티 쓰레딩 방식을 이용한 군집 로봇의 중앙 제어 시스템 구현 (Implementation of the Centralized Control System for Swarm Robots using Multi-Threading method)

  • 전봉기
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.349-354
    • /
    • 2014
  • 이 논문에서는 여러 대의 로봇들이 협력하여 미로를 탈출하는 방법을 제안한다. 논문에서 사용된 교육용 로봇들은 ZigBee로 서로 통신할 수 있으나, 로봇들의 연산기능이 낮아 서로 협력하여 문제를 해결할 수 없다. 로봇의 모션제어로 통로를 직립 보행하도록 하였으며, 절대거리 센서를 이용하여 교차로와 막다른 골목을 인식하면 중앙제어 시스템에 전송하여 명령을 받는다. 여러 로봇들이 동시에 미로에 들어가서 효과적으로 미로를 탐색하도록 하는 미로 탐색 알고리즘을 수정하였다.