• Title/Summary/Keyword: unitary matrix

Search Result 44, Processing Time 0.024 seconds

Neutrino Oscillation and S4 Flavor Symmetry

  • Park, Jong-Chul
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.86-89
    • /
    • 2018
  • Observations of neutrino oscillations are very strong evidence for the existence of neutrino masses and mixing. From recent experimental results on neutrino oscillation, we find that neutrino mixing angles are quite consistent with the so-called tri-bi-maximal mixing pattern, but the deviation from observational results is non-negligible. However, the tri-bi-maximal mixing pattern is still useful as a leading order approximation and provides a good guideline to search for the flavor symmetry in the neutrino sector. We introduce the $S_4$ permutation symmetry as a flavor symmetry to the standard model of particle physics with additional particle contents of heavy right-handed neutrinos and scalar fields. Finally, we obtain the tri-bi-maximal mixing pattern as a mixing matrix in the lepton sector within the suggested model. To derive the required unitary mixing matrix for the neutrino sector, the double seesaw mechanism is utilized.

Preservers of Gershgorin Set of Jordan Product of Matrices

  • Joshi, Manoj;Rajeshwari, Kota Nagalakshmi;Santaram, Kilambi;Kanodia, Sandeep
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.589-597
    • /
    • 2018
  • For $A,B{\in}M_2(\mathbb{C})$, let the Jordan product be AB + BA and G(A) the eigenvalue inclusion set, the Gershgorin set of A. Characterization is obtained for maps ${\phi}:M_2(\mathbb{C}){\rightarrow}M_2(\mathbb{C})$ satisfying $$G[{\phi}(A){\phi}(B)+{\phi}(B){\phi}(A)]=G(AB+BA)$$ for all matrices A and B. In fact, it is shown that such a map has the form ${\phi}(A)={\pm}(PD)A(PD)^{-1}$, where P is a permutation matrix and D is a unitary diagonal matrix in $M_2(\mathbb{C})$.

PSNR Comparison of DCT-domain Image Resizing Methods (DCT 영역 영상 크기 조절 방법들에 대한 PSNR 비교)

  • Kim Do nyeon;Choi Yoon sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1484-1489
    • /
    • 2004
  • Given a video frame in terms of its 8${\times}$8 block-DCT coefncients, we wish to obtain a downsized or upsized version of this Dame also in terms of 8${\times}$8 block DCT coefficients. The DCT being a linear unitary transform is distributive over matrix multiplication. This fact has been used for downsampling video frames in the DCT domains in Dugad's, Mukherjee's, and Park's methods. The downsampling and upsampling schemes combined together preserve all the low-frequency DCT coefficients of the original image. This implies tremendous savings for coding the difference between the original frame (unsampled image) and its prediction (the upsampled image).This is desirable for many applications based on scalable encoding of video. In this paper, we extend the earlier works to various DCT sizes, when we downsample and then upsample of an image by a factor of two. Through experiment, we could improve the PSM values whenever we increase the DCT block size. However, because the complexity will be also increase, we can say there is a tradeoff. The experiment result would provide important data for developing fast algorithms of compressed-domain image/video resizing.

Near-Optimal Low-Complexity Hybrid Precoding for THz Massive MIMO Systems

  • Yuke Sun;Aihua Zhang;Hao Yang;Di Tian;Haowen Xia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1042-1058
    • /
    • 2024
  • Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.

Modified Circulant Feedback Delay Networks (MCFDN's) for Artificial Reverberator Using a General Recursive Filter and CFDN's

  • Ko, Byeong-Seob;Kim, Hack-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4E
    • /
    • pp.31-36
    • /
    • 1999
  • Circulant Feedback Delay Networks (CFDN's), whose feedback matrix is circulant to control the stability of system and time-frequency response easier than unitary one, were recently proposed. However, the drawback of this structure is that the flatness of the frequency response of CFDN's is not enough and it is difficult to adjust the placement of zeros to decrease this problem. Therefore, we propose Modified CFDN's (MCFDN's) consisted of a general recursive filter and CFDN's to maintain maximally the impulse response of CFDN's and improve the flatness of frequency response without adjusting the placement of zeros. The delay unit of a general recursive filter's feedback loop is replaced by CFDN's, are omitted the direct path. We represent the usefulness of MCFDN's to build artificial reverberators and the main parameter to determine characteristics of MCFDN's in this paper.

  • PDF

A design of generalized M-band wavelet filters using lossless system (무손실 시스템을 이용한 일반화된 M-대역 웨이브렛 필터의 설계)

  • 권상근;김재균
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.20-26
    • /
    • 1994
  • Lossless system has been employed to design the perfect reconstruction filter banks and has particularly a close relation with the desing of orthogonal wavelet filter (OWF). With such a relation, we generalize 2-band OWF to the M-band OWF which has an improved performances. The improvement is achieved using the two techniques. One is that the wavelet low pass filter has (N-1)th order regularity with extra zeros while the existing filter has N-th order regularity. The other is that unitary matrix is designed by adding the zeros to the proper positions. As a result, M-band OWF designed by propose method has better performance than M-band OWF designed by exsiting method.

  • PDF

Asymptotic Performance of MIMO-MC-CDMA Systems in Multi-cell Environments (다중셀 환경에서 MIMO-MC-CDMA시스템의 점근적 성능)

  • Kim, Kyeong-Yeon;Ham, Jae-Sang;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.47-52
    • /
    • 2007
  • This paper analyzes the output signal-to-interference-plus-noise ratio (SINR) for a multiple-input-multiple-output (MIMO) multicarrier code division multiple access (MC-CDMA) system with minium mean square error receivers in multi-cell environments. A previous work in single cell environments is extended into analysis in multi-cell environments. The use of Haar unitary code matrix for asymptotic analysis causes other cell interferences expressed with a diagonal matrix haying different diagonal values. This paper shows that other cell interferences converge to an identity matrix whose gain is expressed by only other cell interference power in mean square sense and finds asymptotic deterministic SINRs for a given other cell interference. Under the assumption that the sum of lognormal fading components is distributed by other lognormal function, we show the comparison between theoretical performances and simulations from the view point of bit error rate and present average throughput performance according to the cell radius.

Robust Spectrum Sensing for Blind Multiband Detection in Cognitive Radio Systems: A Gerschgorin Likelihood Approach

  • Qing, Haobo;Liu, Yuanan;Xie, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1131-1145
    • /
    • 2013
  • Energy detection is a widely used method for spectrum sensing in cognitive radios due to its simplicity and accuracy. However, it is severely affected by the noise uncertainty. To solve this problem, a blind multiband spectrum sensing scheme which is robust to noise uncertainty is proposed in this paper. The proposed scheme performs spectrum sensing over the total frequency channels simultaneously rather than a single channel each time. To improve the detection performance, the proposal jointly utilizes the likelihood function combined with Gerschgorin radii of unitary transformed covariance matrix. Unlike the conventional sensing methods, our scheme does not need any prior knowledge of noise power or PU signals, and thus is suitable for blind spectrum sensing. In addition, no subjective decision threshold setting is required in our scheme, making it robust to noise uncertainty. Finally, numerical results based on the probability of detection and false alarm versus SNR or the number of samples are presented to validate the performance of the proposed scheme.

Interference Mitigation Technique for the Sharing between IMT-Advanced and Fixed Satellite Service

  • Lim, Jae-Woo;Jo, Han-Shin;Yoon, Hyun-Goo;Yook, Jong-Gwan
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.159-166
    • /
    • 2007
  • In this paper, we propose an efficient and robust interference mitigation technique based on a nullsteering multi-user multiple-input multiple-output (MU-MIMO) spatial division multiple access (SDMA) scheme for frequency sharing between IMT-advanced and fixed satellite service (FSS) in the 3400-4200 and 4500-4800 MHz bands. In the proposed scheme, the pre-existing precoding matrix for SDMA unitary precoded (UPC) MIMO proposed by the authors is modified to construct nulls in the spatial spectrum corresponding to the direction angles of the victim FSS earth station (ES). Furthermore, a numerical formula to calculate the power of the interference signal received at the FSS ES when IMT-Advanced base stations (BS) are operated with the interference mitigation technique is presented. This formula can be derived in closed form and is simply implemented with the help of simulation, resulting in significantly reduced time to obtain the solution. Finally, the frequency sharing results are analyzed in the co-channel and adjacent channel with respect to minimum separation distance and direction of FSS earth station (DOE). Simulation results indicate that the proposed mitigation scheme is highly efficient in terms of reducing the separation distance as well as robust against DOE estimation errors.

Receivers for Spatially Multiplexed Space-Time Block Coded Systems : Reduced Complexity (시공간블록부호화를 적용한 공간다중화 시스템 수신기 : 복잡도 감소 방안)

  • Hwang Hyeon Chyeol;Shin Seung Hoon;Lee Cheol Jin;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1244-1252
    • /
    • 2004
  • In this paper, we derive some properties of linear detectors (zero forcing or minimum mean square error) at spatial multiplexing systems with alamouti's space-time block code. Based on the derived properies, this paper proposes low-complexity receivers. Implementing MMSE detector adaptively, the number of weight vectors to be calculated and updated is greatly reduced with the derived properties compared to the conventional methods. In the case of recursive least square algorithm, with the proposed approach computational complexity is reduced to less than the half. We also identify that sorted QR decomposition detector, which reduces the complexity of V-Blast detector, has the same properties for unitary matrix Q and upper triangular matrix R. A complexity reduction of about 50%, for sorted QR decomposition detector, can be achieved by using those properties without the loss of performance.