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Abstract 
 

Energy detection is a widely used method for spectrum sensing in cognitive radios due to its 

simplicity and accuracy. However, it is severely affected by the noise uncertainty. To solve 

this problem, a blind multiband spectrum sensing scheme which is robust to noise uncertainty 

is proposed in this paper. The proposed scheme performs spectrum sensing over the total 

frequency channels simultaneously rather than a single channel each time. To improve the 

detection performance, the proposal jointly utilizes the likelihood function combined with 

Gerschgorin radii of unitary transformed covariance matrix. Unlike the conventional sensing 

methods, our scheme does not need any prior knowledge of noise power or PU signals, and 

thus is suitable for blind spectrum sensing. In addition, no subjective decision threshold setting 

is required in our scheme, making it robust to noise uncertainty. Finally, numerical results 

based on the probability of detection and false alarm versus SNR or the number of samples are 

presented to validate the performance of the proposed scheme. 
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1. Introduction 

Cognitive radio (CR) [1][2] is a promising technology for future wireless communication 

systems which has received much attention in the recent years. It aims at improving spectral 

efficiency by allowing secondary users (SUs) to opportunistically access the vacant spectrum 

bands which are originally allocated to primary users (PUs) without inducing any interference. 

A comprehensive review of recent advances in CR is investigated, including its fundamentals, 

architectures and applications [3]. Spectrum sensing, which deals with the opportunistic 

spectrum access, is an essential step in CRs. In general, spectrum sensing techniques can be 

classified into three categories: energy detection, matched filter detection and cyclostationary 

feature detection [4][5]. These techniques can be applied to an individual SU or multiple SUs 

in a collaborative way to make the final decision [6][7]. However, some prior knowledge 

should be assumed at the CR, such as PU signals, channels gains or the accurate noise power. 

Such limitation would greatly influence their application scenarios. 

The characteristics of low complexity for implementation and no needs of PU signals 

information have made energy detection the most widely used spectrum sensing method and 

fairly appropriate for blind spectrum sensing. Furthermore, it has been proved that energy 

detection is optimal for white Gaussian noise if the noise variance is known [8]. However, 

noise variance generally cannot be accurately estimated due to the fluctuation of noise power. 

This is the so-called noise uncertainty, which leads to a high false alarm probability and 

severely deteriorates the performance of energy detection [9][10][11]. 

In order to deal with the multiband spectrum sensing for CR, an early approach is to use a 

tunable narrowband bandpass filter at the radio frequency front-end to sense one narrow 

frequency band at a time [12], over which the existing narrowband spectrum sensing 

techniques can be applied. Similar to that, energy detection can be applied to multiband case, 

where the multiband is divided into multiple subbands and detection is performed in each 

subband independently [13]. One way to operate over multiple frequency bands at a time is to 

use the wavelet transform [14][15], which estimates the power spectral density over a 

multiband frequency range. Optimal multiband joint decisions are made over multiple 

frequency bands by a class of optimization problems in [16], where the decision thresholds are 

designed to maximize the aggregated opportunistic throughput while keeping the aggregate 

interference under a certain value. 

Distinct from the above methods, this paper deals with the multiband sensing problem from 

another perspective. The proposed scheme first estimates the number of occupied channels 

and then determines the corresponding locations. This paper exploits the characteristic that 

sampling power of the busy channel is the addition of noise and signal while idle channel only 

corresponds to noise. Thus channel with larger sampling power is more likely to be a busy one. 

On condition that the sampling powers of each channel are sorted in descending order, the first 

couple of channels are more likely to be the busy channels while the rest are the idle ones. 

Therefore the estimation of the number of occupied channels becomes a critical issue. In this 

way, the multiband spectrum sensing problem becomes the estimation of the number of 

occupied channels, which can be viewed as the issue of estimating the number of signal 

sources. Thanks to the fruitful achievements in source number estimation [17][18][19], we can 

get the estimation of the number of occupied channels.  

This paper proposes a robust spectrum sensing scheme for blind multiband detection in CR 

systems. Due to the fact that the noise eigenvectors of the sampling covariance matrix are 
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orthogonal to the steering matrix while the signal eigenvectors are not, the proposed scheme 

can utilize the transformed Gerschgorin radii to distinguish noise from signal. The likelihood 

function combined with Gerschgorin radii of unitary transformed covariance matrix is 

employed to improve the detection performance. The proposed scheme performs spectrum 

sensing over the total frequency channels simultaneously instead of a single channel each time 

to make an estimation of the number of occupied channels and then determine the 

corresponding locations. Besides, having no prior knowledge requirements of the PU signal, 

the proposed scheme possesses a wide practical applicability. Numerical results verify that our 

approach is robust to noise uncertainty and outperforms energy detection with noise 

uncertainty.  

The rest of the paper is organized as follows. In Section 2, the system model for multiband 

spectrum sensing in CR is described. In Section 3, we develop the robust multiband spectrum 

sensing scheme. Numerical results are shown in Section 4 and conclusions are drawn in 

Section 5. 

2. System Model 

It is assumed that CR system operates over a wideband channel which can be divided into Q  

nonoverlapping subbands and the system usually has very low utilization of spectrum radio 

[20]. K  out of Q  channels are occupied by PUs and the rest of them are vacant channels. The 

total frequency band ranges from sf  to ef  Hz and each channel’s bandwidth is W  Hz. Fig. 1 

depicts a spectrum usage pattern at a particular time in a particular area. We use 

 = 1,2, ,QR  to denote the index set of total channels.  1 1 2= q ,q , ,qKR  denotes the index 

set of occupied channels (the grey rectangles in Fig. 1) and 2 1= -R R R  denotes the index set of 

vacant channels (the white rectangles in Fig. 1). 

The purpose of spectrum sensing is to determine the number and locations of occupied 

channels, namely, to estimate K  and 1R . 

. . .
sf ef

W

KQ K

Q1Q 2Q 

1q Kq-1Kq

Vacant Channels Occupied Channels

1 2 3
 

Fig. 1. Spectrum usage pattern 

 

The binary hypothesis test for spectrum sensing is formulated as follows: 
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where 
0H  denotes that PU is absent, i.e. the channel index belongs to 

2R  and 
1H  denotes 

that PU is present, i.e. the channel index belongs to 
1R . The sources that emit powers are 

considered to be PUs.  nε is the additive noise at the CR receiver, modeled as an 

independent identical distribution (i.i.d.) circularly symmetric complex Gaussian (CSCG) 

vector with zero mean and the covariance matrix 2 I  while  ns  is the received PU signals 

to be detected. Here I  denotes an identity matrix and 2  represents the noise power. Noise 

power density is constant with frequency, and so the noise powers are identical in different 

channels.  ns
 
is modeled as an i.i.d. CSCG random vector with zero mean and the 

covariance matrix    H

s E n n   C s s , where  E   denotes expectation and  
H

 denotes the 

Hermitian transpose. It is also assumed that the received PU signal is uncorrelated with the 

noise. SUs make the decisions according to the observation data  nr , 1, ,n N  where N  

represents the sampling number. 

The covariance matrix of the observation data  nr can be represented as 

 

     2= = +H

r SE n n   C r r C I . (2) 

 

However, in practice, the covariance matrix can only be estimated from a finite set of sampling 

numbers, which is called sampling covariance matrix and is represented as 
 

    
1

1ˆ
N

H

r

n

n n
N 

 C r r . (3) 

 

When in the limit N  , ˆ
rC  will become rC . 

3. Proposed Spectrum Sensing Scheme 

3.1 Principle Analysis 

For the multiband spectrum sensing problem, there are multiple channels to be detected and 

we must detect the presence or absence of PUs in each channel. So multiband spectrum 

sensing is to find out the exact locations of the channel occupied by PUs and then SUs can 

make use of the idle channels after spectrum sensing. On the other hand, note that sampling 

power of the busy channel is the addition of noise and signal while idle channel only 

corresponds to noise, and hence, received signal with larger sampling power is more likely not 

to be pure noise. As a result, sampling powers of the idle channels are approximately identical 

and lower than those of the busy channels. Exploiting this characteristic, if we sort the 

sampling powers of each channel in descending order, the first coming K̂  channels 

correspond to the busy channels while the rest ˆ-Q K  channels correspond to the idle channels. 

In other words, the knowledge of K̂  is the key issue that needs to be settled. So the multiband 

spectrum sensing problem shifts to be the estimation of the number of occupied channels, 

which can be seen as the subject of estimating the number of signal sources. 

Source number estimation with no prior knowledge of the signals has already been widely 

investigated in radar array processing. Akaike’s Information Criterion (AIC) and Minimum 
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Description Length (MDL), the two common information theoretic criteria, are proposed to 

estimate the number of signal sources [17]. However, AIC and MDL only employ the 

information of the eigenvalues of the covariance matrix but do not exploit any other 

information, such as the eigenvectors and signal subspace components. There exists a more 

robust method applying Gerschgorin likelihood function called Gerschgorin likelihood 

estimator (GLE) [18]. It enhances the detection performance by jointly utilizing the likelihood 

function combined with Gerschgorin radii of unitary transformed covariance matrix. In this 

method, different hypotheses on the number of signal sources are assumed first. Then several 

competing models and the corresponding modeling functions are constructed under these 

hypotheses by using Gerschgorin AIC (GAIC) or Gerschgorin MDL (GMDL). The number of 

sources is determined when the modeling function, i.e. GAIC or GMDL, is minimized. 

Motivated by source number estimation, we can get the estimation of the number of occupied 

channels utilizing the GLE method. Details are given below. 

Before the discussion of our proposed scheme, we shall make a brief review of 

Gerschgorin’s disk theorem [21]. The theorem gives an easy approach to estimate the 

locations of the eigenvalues of a matrix by its elements since there is no need to perform 

precise calculation in general. 

3.2 Gerschgorin’s Disk Theorem 

Specifically, for a complex L L  matrix A , whose  ,i j th element is denoted as ,i ja . The 

Gerschgorin radius, the sum of the magnitudes of the elements of the i th row, excluding the 

i th element, which is the Gerschgorin center, is defined as  
 

 ,

1,

1,2, ,
L

i i j

j j i

r a i L
 

  . (4) 

 

Gerschgorin disk, the collection of points in the complex plane whose distance to the 

Gerschgorin center is not larger than the Gerschgorin radius, is defined as  
 

 , 1,2, ,i i iz a r i L   . (5) 

 

Gerschgorin’s disk theorem tells that the eigenvalues of a matrix locate in the union of the 

Gerschgorin disks. Furthermore, if m  Gerschgorin disks are separated from the other disks, 

then there exist exactly m  eigenvalues locating in the union of the m  disks. However, the 

Gerschgorin radii and the Gerschgorin centers of the sampling covariance matrix usually tend 

to be large and close, respectively, making it difficult to distinguish noise from signals.  

3.3 Proposed Scheme 

With the previous limitations in mind, we employ a likelihood approach called GLE to 

estimate the number of occupied channels similar to that of [18]. Before introducing GAIC 

and GMDL, we first make some transformations with Eq. (3).  

The binary hypothesis test (1) can be rewritten as 
 

      = +n n nr Ps ε , (6) 

 

where P  is a Q K  matrix with its  ,i j th element shown as 
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  1
,

1 , =
=

0i j

i R j k
p

others


. (7) 

 

In this way, P  can be seen as the steering matrix. 

The covariance matrix depicts the statistical behavior of the received signals. A unitary 

transformation is performed at first. The sampling covariance matrix of the received signals 

can be first partitioned as  
 

 

11 12 1

21 22 2

1 2

Q

Q

QQ

Q Q QQ

c c c

c c c
c

c c c

 
   

    
  

 

'

r
Hr

C c
C

c
, (8) 

 

where '

rC
 
is a    1 1Q Q    leading principal submatrix of 

rC ,which is obtained by 

deleting the last row and column of 
rC .It is noted that 

 1 2 1
, , ,

T

Q Q Q Q
c c c c


 
 

. 

The reduced covariance matrix '

rC  can be decomposed by its eigenvalues as  

 

 ' ' ' 'H

r C U DU , (9) 

 

where '
D  is a diagonal matrix constructed from the corresponding eigenvalues of '

rC  as  

 

 ' ' ' ' '

1 2 1K Qdiag     
   D , (10) 

 

and '
U is a    1 1Q Q    unitary matrix ( ' 'H U U I ) constructed from the corresponding 

eigenvectors of '

rC  as 

 

 ' ' ' ' '

1 2 1K Q
   U q q q q . (11) 

 

Here 
'

i  shown in descending order denotes the eigenvalues and '

iq  represents the 

eigenvectors of the corresponding eigenvalues. For the true covariance matrix, it can be 

proved that 
 

 ' ' 2

+1 -1= = =K Q   , (12) 

 

since the smallest eigenvalues correspond to the noise variance. 

An important unitary transformation matrix is constructed, represented by 
 

 
'

1T

 
  
 

U 0
U

0
. (13) 

 

Then the transformed covariance matrix is given by 
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c U
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where ' 1,2, , 1H

i i i Q   q c . 

According to Gerschgorin’s disk theorem, the Gerschgorin radius of S  is  
 

 
1

'

,

1,

1,2, , 1
Q

H

i i j i i

j j i

r a i Q


 

     q c . (15) 

 

Based on Schmidt’s concept [22], it is important to verify that =0i  when 

   = +1 , , -1i K Q  due to the fact that the noise eigenvectors are orthogonal to steering matrix 

of '

rC . Additionally, 0i   when =1, ,i K  since the signal eigenvectors are not orthogonal 

to steering matrix of '

rC  and sC is full rank. 

Using the similar procedures established by Wax and Kailath [17] in conjunction with 

Schmidt’s concept, we obtain the Gerschgorin log-likelihood function as 
 

       -1ˆ= - log det -
k k

Q k N tr   
  

S S S , (16) 

 

where Ŝ  denotes the estimated transformed sampling covariance matrix and 
 k

S  represents 

the true transformed covariance matrix if there exists k  occupied channels. 

Based upon the derivations in [17] and by ignoring the constant terms, the Gerschgorin 

log-likelihood function can be approximately expressed as 
 

    
 

 

' 2
-1

' '
=1-1

= -1- log - log -
k

Q i
Q QQ

iQ i

k r
k N Q k N c

k



 

   
    

    
 , (17) 

 

where 
 

  
 1 - -1

-1
' '

-1

= +1

=

Q k
Q

Q i

i k

k 
 
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 
  (18) 

 

and 
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  
-1

' '

-1

= +1

1
=

- -1

Q

Q i

i k

k
Q k

  . (19) 

 

It can be seen that the first term of Eq. (17) is an eigenvalue based log-likelihood function, 

describing the ratio of the arithmetic mean of the noise elements to their geometric mean. The 

second term of Eq. (17) is contributed by the Gerschgorin radii weighting by their 

corresponding eigenvalues. This Gerschgorin term is a measure of the distance between the 

elements in the signal subspace. 

Combining the above Gerschgorin likelihood function and a penalty function, the GLE 

becomes 
 

      =- + , ,QGLE k k P N k Q , (20) 

 

where  , ,P N k Q  represents the penalty function. 

According to [23], the number of free parameters in Eq. (17) is 2k  for signal subspace 

components and k  for Gerschgorin radii. Hence, the GLE criterion can be further illustrated 

as  
 

    
 

 

' 2
-1 2

' '
=1-1

= - -1- log log - +
k

Q i
QQ

iQ i

k r
GAIC k N Q k N c k k

k



 

   
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    
  (21) 

 

and 
 

    
 

 
 

' 2
-1 2

' '
=1-1

1
= - -1- log log - + log

2

k
Q i

QQ

iQ i

k r
GMDL k N Q k N c k k N

k



 

   
    

    
 . (22) 

 

The number of occupied channels K  is then estimated by the value which minimizes the 

GAIC or GMDL criterion. That is to say, 
 

  
=0,1, , -1

ˆ =arg min
k Q

K GAIC k  (23) 

 

or 
 

  
=0,1, , -1

ˆ =arg min
k Q

K GMDL k . (24) 

 

Note that the diagonal elements of rC  corresponds to the sampling power of each channel. 

After estimating the number of occupied channels, the index of the largest K̂  elements of the 

sampling powers correspond to the index set of occupied channels. In other words, we use q  

to denote the sampling power, =1,2, ,q Q . If 
1 2
, , ,

K

q q q  


 are the K̂  largest elements of 

 1 2, , , Q   , then  1 1 2
ˆ = , , ,

K

q q q R  is the estimated index set of occupied channels. 

In summary, the steps of the proposed schemes are shown below. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 5, May. 2013                                 1139 

Copyright ⓒ 2013 KSII 

Step 1: Estimate the sampling covariance matrix 
rC
 
and transformed covariance matrix S . 

Step 2: Perform eigenvalue decomposition and calculate the Gerschgorin radii. 

Step 3: Estimate the number of occupied channels using GAIC Eq. (23) or GMDL Eq. (24). 

Step 4: The indexes of the K̂  largest diagonal elements of 
rC  correspond to the indexes of the 

occupied channels. 

3.4 Discussions of The Proposal 

 From Eq. (23) and Eq. (24), it seems that our GAIC/GMDL scheme cannot deal with the 

special case when there are Q  occupied channels. Under this circumstance, all the 

channels are occupied. From another perspective, it can be viewed as a single-band 

spectrum sensing problem and abundant conventional methods have already emerged on 

this topic. So the proposed method can estimate the number of occupied channels in all 

cases and make the appropriate judgment. 

 The proposed method does not need to set any subjective threshold or estimate the noise 

power, which avoids the interference of the inaccurate estimation. Hence, the proposal is 

more robust to noise uncertainty than energy detection. 

 To reach the final decisions, unlike the conventional spectrum sensing methods, the 

proposed GAIC/GMDL method jointly utilizes the information of Gerschgorin radii, 

signal and noise subspace components together with the likelihood function. In this way, 

the detection performance would be greatly improved.  

4. Numerical Results 

In this section, some numerical results are provided to validate the proposal’s performance. 

Detection probability dP  and false alarm probability fP  are used to scale the performance. In 

IEEE 802.22, 0.9dP   is the generally required detection probability and 0.1fP   is the 

generally required false alarm probability for ideal CR systems [11]. These two key 

parameters are used for performance evaluation. Meanwhile, noise uncertainty is also 

considered here. The estimated noise power is uniformly distributed in an interval 
2 2,A A    . Thus the noise uncertainty is 1010log A dB  . Consequently, energy 

detection with noise uncertainty has to set the threshold by using the estimated noise variance 

to meet the given fP . 

It is assumed that there are =40Q  channels to be detected in total, among which =10K  

channels are occupied by the PUs. Our goal is to find out the exact locations of the occupied 

channels, and thus SUs can make full use of the vacant ones. It is noted that PUs’ signal 

powers are generally various in different channels, and SNR in the following numerical results 

is the average SNR. 500 independent Monte Carlo runs are carried out in each procedure. For 

the energy detection, there are two cases: without noise uncertainty, i.e. 0  , and with 1 dB 

noise uncertainty, i.e. 1  . Energy detection with 0.1fP   is used in the following Sections. 

4.1 Detection Performance with Varying Channel Condition 

In this section, the detection performance comparison of our proposed GAIC/GMDL method 

and energy detection in the case of varying channel condition resulting in changing received 

SNR. Fig. 2 depicts the probability of detection and false alarm against SNR when =200N .  
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It follows from the figure that when 200N  , the ideal energy detection reaches 0.9dP   

at approximately 2 dB lower SNR than energy detection with 1 dB noise uncertainty, which 

indicates a perfect 
dP  performance. Furthermore, fP of the energy detection with 1 dB noise 

uncertainty is approximately 0.2, which is not accepted in CR systems while the ideal energy 

detection remains the preset value 0.1. It implies that noise uncertainty severely degrades the 

performance of energy detection. Similarly, we can conclude that the proposed GAIC scheme 

outperforms energy detection with noise uncertainty as well no matter whether dP  or fP  

performance is concerned. 

The proposed GMDL scheme seems to have a poor 
dP  performance. However, note that it 

can almost achieve a perfect fP  performance, which indicates that no false alarm event occurs 

under this circumstance. This is even better than the ideal energy detection. Meanwhile, a 

perfect 
dP  performance is also achieved at a moderate to high SNR. Thus it can be concluded 

a perfect performance is obtained. In addition, the proposed GAIC scheme attains a better 
dP  

performance than GMDL scheme. However, its fP  performance is worse than GMDL 

scheme. 
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Fig. 2. Detection probability and false alarm probability against SNR (N=200) 

 

4.2 Detection Performance with Different Timing Requirements 

For different timing requirements, different number of samples has to be collected at the 

receiver to satisfy a given quality criteria. Thus, in this section, we show how the number of 

samples affects the performance of our proposed GAIC/GMDL scheme and energy detection. 

Fig. 3 depicts the detection performance, characterized using dP  and fP , against the number 
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of samples at = -10SNR dB . The figure suggests that when N exceeds a certain value, the 

performance of energy detection with 1 dB noise uncertainty in terms of 
dP  is not further 

improved due to SNR wall [9]. It indicates that noise uncertainty cannot be solved by means of 

increasing the number of samples, whereas the performance of the others is still enhanced or 

has reached their limits. This finding means that even though the proposed GMDL scheme has 

a worse 
dP  performance than energy detection with 1 dB noise uncertainty when the number 

of samples is low, it will outperform energy detection with 1 dB noise uncertainty as the 

number of samples increases. Furthermore, fP  of the proposed approach can meet CR 

system’s requirement and a perfect fP  performance can be obtained in GMDL scheme. fP  of 

energy detection with 1 dB noise uncertainty is much higher than other methods, making it 

unreliable, especially when the number of samples is large.  
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Fig. 3. Detection probability and false alarm probability against the number of samples (SNR=-10 dB) 

 

4.3 Detection Performance with Varying Channel Condition and Strict Quality 
Requirements 

The simulation results shown in this section verify the effectiveness of our proposed 

GAIC/GMDL algorithm when the number of required samples goes high to satisfy strict 

quality requirements. To further illustrate the influence of the number of samples more clearly, 

dP  and fP  against SNR at =10000N  and =20000N  is provided in Fig. 4 and Fig. 5, 

respectively. It further validates the conclusions drawn in Fig. 3 that the proposed GMDL 

scheme will outperform energy detection with 1 dB noise uncertainty in terms of dP
 
as the 

number of samples increases. In addition, note that the conclusions obtained in Fig. 2 can also 

be applied here. 
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Fig. 4. Detection probability and false alarm probability against SNR (N=10000) 
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Fig. 5. Detection probability and false alarm probability against SNR (N=20000) 
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5. Conclusion 

A robust spectrum sensing scheme for blind multiband detection in CR systems is proposed in 

this paper. To reach the final decisions, the proposed GAIC/GMDL scheme jointly utilizes the 

information of Gerschgorin radii, signal and noise subspace components together with the 

likelihood function. The method performs spectrum sensing simultaneously over the total 

frequency channels rather than a single channel each time. It estimates the number of occupied 

channels firstly, and then determines the corresponding locations. Furthermore, our scheme 

needs no prior information about the PU signals, making it appropriate for blind spectrum 

sensing. In addition, it does not need to set a subjective decision threshold and does not depend 

on the estimation of the noise power, which is severely deteriorated by the noise uncertainty. 

Numerical results verify that the proposal is robust to noise uncertainty and outperforms 

energy detection with noise uncertainty. In general, our proposed scheme is superior to energy 

detection in the case that there is no knowledge about noise power. 
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