• Title/Summary/Keyword: uniquely nil clean

Search Result 3, Processing Time 0.018 seconds

GROUP RINGS SATISFYING NIL CLEAN PROPERTY

  • Eo, Sehoon;Hwang, Seungjoo;Yeo, Woongyeong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.117-124
    • /
    • 2020
  • In 2013, Diesl defined a nil clean ring as a ring of which all elements can be expressed as the sum of an idempotent and a nilpotent. Furthermore, in 2017, Y. Zhou, S. Sahinkaya, G. Tang studied nil clean group rings, finding both necessary condition and sufficient condition for a group ring to be a nil clean ring. We have proposed a necessary and sufficient condition for a group ring to be a uniquely nil clean ring. Additionally, we provided theorems for general nil clean group rings, and some examples of trivial-center groups of which group ring is not nil clean over any strongly nil clean rings.

SINGULAR CLEAN RINGS

  • Amini, Afshin;Amini, Babak;Nejadzadeh, Afsaneh;Sharif, Habib
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1143-1156
    • /
    • 2018
  • In this paper, we define right singular clean rings as rings in which every element can be written as a sum of a right singular element and an idempotent. Several properties of these rings are investigated. It is shown that for a ring R, being singular clean is not left-right symmetric. Also the relations between (nil) clean rings and right singular clean rings are considered. Some examples of right singular clean rings have been constructed by a given one. Finally, uniquely right singular clean rings and weakly right singular clean rings are also studied.

CLEANNESS OF SKEW GENERALIZED POWER SERIES RINGS

  • Paykan, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1511-1528
    • /
    • 2020
  • A skew generalized power series ring R[[S, 𝜔]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action 𝜔 of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are skew polynomial rings, skew Laurent polynomial rings, skew power series rings, skew Laurent series rings, skew monoid rings, skew group rings, skew Mal'cev-Neumann series rings, the "untwisted" versions of all of these, and generalized power series rings. In this paper we obtain some necessary conditions on R, S and 𝜔 such that the skew generalized power series ring R[[S, 𝜔]] is (uniquely) clean. As particular cases of our general results we obtain new theorems on skew Mal'cev-Neumann series rings, skew Laurent series rings, and generalized power series rings.