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SINGULAR CLEAN RINGS

Afshin Amini, Babak Amini, Afsaneh Nejadzadeh, and Habib Sharif

Abstract. In this paper, we define right singular clean rings as rings in

which every element can be written as a sum of a right singular element

and an idempotent. Several properties of these rings are investigated. It
is shown that for a ring R, being singular clean is not left-right symmetric.

Also the relations between (nil) clean rings and right singular clean rings
are considered. Some examples of right singular clean rings have been

constructed by a given one. Finally, uniquely right singular clean rings

and weakly right singular clean rings are also studied.

1. Introduction

All rings we consider are associative with identity 1 6= 0. The Jacobson radi-
cal, the group of units, the set of idempotents and the set of nilpotent elements
of a ring R will be denoted by J(R), U(R), Id(R) and Nil(R), respectively.
Recall that an element x of a ring R is right (left) singular if annr(x) (annl(x))
is an essential right (left) ideal of R. The set of all right (left) singular elements
of R is a two-sided ideal of R which is called the right (left) singular ideal of
R and is denoted by Z(RR) (Z(RR)). A ring R is called right nonsingular if
Z(RR) = 0. Nicholson in [8] introduced clean rings for the first time as rings
in which every element is a sum of a unit and an idempotent. After that, some
generalizations of clean rings such as strongly clean [9], uniquely clean [10] and
weakly clean rings [1], have been considered. Diesel in [4] defined nil clean rings.
A ring R is called nil clean, if every element is a sum of a nilpotent element and
an idempotent. It was shown that every nil clean ring is clean. In this paper,
we study rings in which every element is a sum of a right singular element and
an idempotent and we call these rings, right singular clean. We shall give a
necessary and sufficient condition for a right singular clean ring to be clean.
The direct products and the ring direct summands of right singular clean rings,
are also right singular clean. However, the homomorphic images of these rings
need not be right singular clean. The n × n matrix ring, the polynomial ring
and the formal power series ring over any ring, are never right singular clean.
Similar to [1] and [10], we shall define weakly right singular clean and uniquely
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right singular clean rings. It is proved that a ring R is uniquely right singular
clean if and only if R is abelian and right singular clean.

2. Right singular clean rings

In this section we introduce (right) singular clean rings and investigate some
basic properties of these rings.

Definition 2.1. We call a ring R right singular clean, if every element of R
can be expressed as a sum of a right singular element and an idempotent. Left
singular clean rings are defined similarly. A ring R is called singular clean, if
it is both right and left singular clean.

Example 2.2. (a) Clearly the rings Z2 and Z4 are singular clean but the ring
Z3 is not.

(b) The ring R = Z4 ⊕ Z4i ⊕ Z4j ⊕ Z4k, with multiplication defined by
i2 = j2 = −1 and ij = −ji = k is a noncommutative singular clean ring, since
Id(R) = {0, 1} and a messy calculation shows that

Z(RR) = {a + bi + cj + dk ∈ R | a + b + c + d ∈ 2Z4}.
It is easily seen that a right nonsingular ring is right singular clean if and only

if it is Boolean. Now we have the following characterization of right singular
clean rings.

Proposition 2.3. A ring R is right singular clean if and only if R
Z(RR) is

Boolean and idempotents lift modulo Z(RR).

Recall that a proper ideal P of a ring R is called completely prime, if for
any a, b ∈ R whenever ab ∈ P , then a ∈ P or b ∈ P .

Corollary 2.4. Let R be a right singular clean ring. Then

(1) 2 ∈ Z(RR).
(2) J(R) and Nil(R) are contained in Z(RR).
(3) If x ∈ R and xn ∈ Z(RR) for some n ∈ N , then x ∈ Z(RR).
(4) Every prime ideal of R which contains Z(RR) is both completely prime

and maximal.
(5) If R satisfies ACC on right annihilators of elements, then every prime

ideal of R is maximal.
(6) R is Dedekind-finite.

Proof. The proofs of parts (1), (2), (3) and (4) follow from the fact that R
Z(RR)

is a Boolean ring.
(5) By [6, Theorem 7.15], Z(RR) ⊆ Nil∗(R), where

Nil∗(R) = ∩{P | P is a prime ideal of R}.
So Z(RR) ⊆ P for every prime ideal P . Now, apply part (4).

(6) Let a, b ∈ R and ab = 1. The element b(1−ba) is nilpotent and so by part
(2) belongs to Z(RR). Thus 1− ba = ab(1− ba) ∈ Id(R)∩ Z(RR). Therefore,
1− ba = 0. �
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Now, we show that for any ring R, the polynomial ring S = R[x] and the
formal power series ring T = R[[x]] are neither left nor right singular clean.
By [6, Exercise 7.35], Z(SS) = Z(RR)[x]. Therefore, S

Z(SS) is not a Boolean

ring and so Proposition 2.3 implies that S is not right singular clean. Also,
x ∈ J(T ) but x /∈ Z(T ). So by Corollary 2.4 part (2), T is not right singular
clean. Moreover, for any ring R and any infinite set Γ, the ring of column
(respectively, row) finite Γ × Γ matrices over R is not Dedekind-finite and so
by Corollary 2.4 part (6), is neither left nor right singular clean.

Proposition 2.5. If R is a commutative singular clean ring, then every prime
ideal P of R is either maximal or an essential ideal.

Proof. Let P be a prime ideal of R which is not essential and let x ∈ R − P .
There exist s ∈ Z(R) and e ∈ Id(R) such that x = s + e. Clearly ann(s) * P.
Choose r ∈ ann(s)−P . So we have rx = re and rxe = re. Thus re(1−x) = 0
which implies that (1− x) ∈ P . Hence P + 〈x〉 = R. So P is a maximal ideal
of R. �

Proposition 2.6. If R is a right singular clean ring which satisfies ACC on
right annihilators, then R is a semiprimary ring and

R

J(R)
=

R

Z(RR)
∼=

n∏
i=1

Z2

for some n ∈ N.

Proof. By [6, Theorem 7.15], Z(RR) is a nilpotent ideal and so Corollary 2.4
implies that J(R) = Z(RR). Since R satisfies ACC on right annihilators, by
[6, Propositions 6.59 and 6.60], it has no infinite set of orthogonal idempotents.
As idempotents lift modulo Z(RR)= J(R), the ring R

J(R) = R
Z(RR) also has no

infinite set of orthogonal idempotents. Therefore, the Boolean ring R
J(R) is a

semisimple ring [5, Theorem 10.6], and so is isomorphic to
∏n
i=1 Z2, for some

n ∈ N. �

Let R and S be rings and M be an (R,S)-bimodule such that Z(MS) 6= M .
We show that the ring T = [R M

0 S ] is not right singular clean. To see this,
let m ∈ M − Z(MS). Then [ 0 m0 0 ] is a nilpotent element of T which is not in
Z(TT ). Similarly if Z(RM) 6= M , then T is not left singular clean. With the
same technique, we can show that for any n ≥ 2, the ring of n×n matrices, the
ring of n× n upper triangular matrices and the ring of n× n lower triangular
matrices over any ring R are neither left nor right singular clean. The following
example shows that a right singular clean ring need not be left singular clean.

Example 2.7. Let R =
[ Z2 Z2

0 Z4

]
. Then

Id(R) =

{[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
0 1
0 1

]
,

[
0 0
0 0

]}
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and by some calculations

Z(RR) =

{[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 2

]
,

[
0 1
0 2

]}
.

So by a direct check, we can show that R is right singular clean. The element
x = [ 0 1

0 0 ] is nilpotent which is not a left singular element, since annl(x) =
[
0 Z2

0 Z4

]
is a direct summand of RR. Thus by Corollary 2.4, R is not left singular clean.

Proposition 2.8. A ring R is right singular clean if and only if every ele-
ment of R can be written as a difference of a right singular element and an
idempotent.

Proof. Suppose that R is right singular clean and x ∈ R. Then there exist s ∈
Z(RR) and e ∈ Id(R), such that −x = s + e. So x = −s− e. The proof of the
converse implication is similar. �

McGovern in [7] introduced the commutative almost clean rings as rings in
which every element can be written as a sum of a regular element (an element
which is not a zero-divisor) and an idempotent. We call a ring R right almost
clean, if for every x ∈ R there exist a ∈ R and e ∈ Id(R) such that x = a + e,
where annr(a) = 0.

Proposition 2.9. Every right singular clean ring is right almost clean.

Proof. Let R be a right singular clean ring and x ∈ R. Then there exist s ∈
Z(RR) and e ∈ Id(R) such that x − 1 = s + e. So x = (s + 1) + e and
annr(s + 1) = 0. Therefore, R is a right almost clean ring. �

We need the following result in the sequel.

Lemma 2.10. Let R be a ring and a ∈ R. If a = s + e, where s ∈ Z(RR),
e ∈ Id(R) and annr(a) = 0, then e = 1.

Proof. Since annr(e) ∩ annr(s) = 0, we have annr(e) = 0. Thus e = 1. �

Proposition 2.11. Let R be a right singular clean ring. Then for any elements
u, v ∈ R with annr(u) = annr(v) = 0 (in particular, if u, v ∈ U(R)), the
element (u− v) ∈ Z(RR).

Proof. By Lemma 2.10, there exist s, s′ ∈ Z(RR) such that u = s + 1 and
v = s′ + 1 so that u− v = s− s′ ∈ Z(RR). �

In [3], a ring R is called a UU -ring, if all units in R are unipotent, i.e.,
U(R) ⊆ 1 + Nil(R).

Proposition 2.12. If R is a right singular clean ring and Z(RR) is a nil ideal,
then R is a UU -ring.

Proof. Let u ∈ U(R). By Lemma 2.10, u = s+ 1, where s ∈ Z(RR). So R is a
UU -ring, since Z(RR) is nil. �
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Proposition 2.13. Let {Ri}i∈I be a family of rings and R =
∏
i∈I Ri. Then

R is right singular clean if and only if each Ri is right singular clean.

Proof. The proof follows from the fact that Z(RR) =
∏
i∈I Z(RiRi

). �

If e ∈ R is a central idempotent, then R is a right singular clean ring if and
only if eRe and (1−e)R(1−e) are so. Note that if e ∈ Id(R) is not central, then
the above statement is not valid in general. For example, in the ring M2(Z2),
let e = [ 1 0

0 0 ]. Then the rings eRe and (1 − e)R(1 − e) are isomorphic to Z2

and so they are singular clean. But the ring R is neither right nor left singular
clean.

Proposition 2.14. Let R be a right singular clean ring and e ∈ Id(R) such
that eR(1− e) = 0. Then the ring S = eRe is right singular clean.

Proof. First we show that if Z(RR) ∩ S ⊆ Z(SS). Let a ∈ Z(RR) ∩ S and
0 6= s ∈ S. There exists r ∈ R such that sr 6= 0 and asr = 0. Thus as(ere) = 0
and s(ere) 6= 0, since eR(1− e) = 0. This implies that a ∈ Z(SS). Now, to see
that S is right singular clean, let x ∈ S. Then x = s + f , where s ∈ Z(RR)
and f ∈ Id(R). Thus x = ese + efe. Since eR(1 − e) = 0, ese ∈ Z(SS) and
efe ∈ Id(S). �

Proposition 2.15. Let R be a local ring. Then R is a right singular clean
ring if and only if R

Z(RR)
∼= Z2.

Proof. ⇐) The proof follows from Proposition 2.3.
⇒) By Corollary 2.4, J(R) ⊆ Z(RR) and hence Z(RR) = J(R). So the

Boolean ring R
Z(RR) is a division ring. Therefore, it is isomorphic to Z2. �

Corollary 2.16. Let M be a maximal ideal of a commutative ring R. Then
the following are equivalent:

(1) The ring R
M is singular clean;

(2) The ring R
Mk is singular clean for every k ∈ N;

(3) The ring R
Mk is singular clean for some k ∈ N.

Proof. The proof is a consequence of the fact that for any k ≥ 1, S = R
Mk is a

local ring with J(S) = Z(S) = M
Mk and S

Z(S)
∼= R

M . �

Example 2.17. The ideal 〈x〉 is a maximal ideal of Z2[x] and the ring Z2[x]
〈x〉
∼=

Z2 is a singular clean ring. By Corollary 2.16, the ring Z2[x]
〈x〉n is a singular clean

ring for every n ∈ N.

Corollary 2.18. The ring Zk, where k ∈ N is singular clean if and only if
k = 2n for some n ∈ N.

Proof. The proof follows from Proposition 2.13 and the fact that for a prime
number p, the local ring Zpn is singular clean if and only if p = 2 (Proposition
2.15). �
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As we have seen in Corollary 2.4, in a right singular clean ring R, every
nilpotent element belongs to Z(RR). The following example shows that for a
commutative singular clean ring R, Z(R) need not be a nil ideal. Moreover,
the factor ring of a singular clean ring is not necessarily singular clean.

Example 2.19. By Corollary 2.18, for any n ∈ N the ring Z2n is a singular
clean ring and Proposition 2.13 implies that R =

∏
n∈N Z2n is a singular clean

ring. Note that Z(R) is not a nil ideal, since the element (0, 2, 2, . . .) ∈ Z(R) =
J(R) is not a nilpotent element. Now, since Z(R) = J(R), there exists a prime
ideal P of R which is not maximal. Therefore, the ring R

P is not a singular

clean ring, otherwise, the integral domain R
P would be isomorphic to Z2 and so

P is a maximal ideal of R which is a contradiction.

Theorem 2.20. Let R be a right singular clean ring. Then R is a clean ring
if and only if Z(RR)= J(R).

Proof. Suppose that Z(RR)= J(R) and let x ∈ R. We have x− 1 = s + e for
some s ∈ Z(RR) and e ∈ Id(R). Thus x = (s+ 1) + e, which is a sum of a unit
and an idempotent. Therefore, R is a clean ring. Conversely, assume that R is
a clean ring. Now, let s ∈ Z(RR). We have s = u + e for some u ∈ U(R) and
e ∈ Id(R). By Lemma 2.10, e = 1 and hence s − 1 ∈ U(R). Thus s ∈ J(R).
So Z(RR)⊆ J(R). Since R is right singular clean, by Corollary 2.4, J(R) ⊆
Z(RR). �

Note that a clean ring R with Z(RR)= J(R), need not be right singular
clean. For example, consider the clean ring Z6 which is not singular clean by
Corollary 2.18.

Let R be a commutative ring and M be an R-module. The idealization
S = R(+)M with the following addition and multiplication

(r,m) + (r′,m′) = (r + r′,m + m′) and (r,m)(r′,m′) = (rr′, rm′ + r′m)

is a commutative ring.

Example 2.21. Let S = Z(+)Z2∞ , where Z2∞ is the Prüfer 2-group. Let
K = 〈 12 + Z〉 be the minimal subgroup of Z2∞ . Then 0(+)K is an essential
ideal of S. Therefore, 2Z(+)Z2∞ = ann(0(+)K) ⊆ Z(S). Since 2Z(+)Z2∞ is
a maximal ideal of S, we have Z(S) = 2Z(+)Z2∞ . Consequently, S

Z(S)
∼= Z2

implies that S is a singular clean ring. On the other hand, J(S) = 0(+)Z2∞

and according to Theorem 2.20, S is not a clean ring.

Theorem 2.22. If R is a commutative singular clean ring and M is a nonsin-
gular R-module, then the idealization S = R(+)M is a commutative singular
clean ring.

Proof. Let (r,m) ∈ S. Then there exist z ∈ Z(R) and e ∈ Id(R) such that
r = z + e. So (r,m) = (e, 0) + (z, 0) + (0,m). Now, (e, 0) ∈ Id(S) and
(0,m) ∈ Nil(S) ⊆ Z(S). It is sufficient to show that (z, 0) ∈ Z(S). Since
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z ∈ Z(R), there exists an essential ideal I of R such that Iz = 0. So I(zM) = 0.
Thus zM = 0, since M is a nonsingular module. As ann(z, 0) ⊇ I(+)M ,
ann(z, 0) is an essential ideal of S. So (z, 0) ∈ Z(S). Therefore, S is a singular
clean ring. �

Proposition 2.23. Let R be a commutative ring and S = R(+)M , where M
is an ideal of R. Then S is singular clean if and only if R is so.

Proof. The proof follows from the fact that Z(S) = Z(R)(+)M. �

Proposition 2.24. Let R be a ring and M be a two-sided ideal of R such that
M ⊆ Z(RR). Then the ring R is right singular clean if and only if the ring
S = [R M

0 R ] is so.

Proof. It is not difficult to check that Z(SS) =
[
Z(RR) M

0 Z(RR)

]
. Now, the rest

of the proof is straightforward. �

Lemma 2.25. Let R be a ring and M be an ideal of R containing an element
m0 with annl(m0) = 0. Let S = {[ a m0 a ] | a ∈ R, m ∈M}. Then Z(SS) =
{[ a m0 a ] ∈ S | a ∈ Z(RR)}.

Proof. First we show that if a ∈ Z(RR), then [ a 0
0 a ] belongs to Z(SS). Consider

a nonzero element [ x m0 x ] ∈ S. If x 6= 0, then there exists r ∈ R such that xr 6= 0
and axr = 0. By hypothesis xrm0 6= 0. Thus[

x m
0 x

] [
0 rm0

0 0

]
=

[
0 xrm0

0 0

]
6= 0 and

[
a 0
0 a

] [
0 xrm0

0 0

]
= 0.

If x = 0, then there exists r ∈ R such that mr 6= 0 and amr = 0. Thus[
0 m
0 0

] [
r 0
0 r

]
=

[
0 mr
0 0

]
6= 0 and

[
a 0
0 a

] [
0 mr
0 0

]
= 0.

Therefore, [ a 0
0 a ] ∈ Z(SS). Now, we show that for every m ∈M , [ 0 m0 0 ] ∈ Z(SS).

Let [ x y0 x ] be a nonzero element of S. If x 6= 0, then[
x y
0 x

] [
0 m0

0 0

]
=

[
0 xm0

0 0

]
6= 0 and

[
0 m
0 0

] [
0 xm0

0 0

]
= 0.

If x = 0, then [ 0 m0 0 ]
[
0 y
0 0

]
= 0. Thus [ 0 m0 0 ] ∈ Z(SS). Therefore, for any a ∈

Z(RR) and m ∈ M , [ a m0 a ] ∈ Z(SS). Conversely, let [ a m0 a ] ∈ Z(SS), it is easy
to show that a ∈ Z(RR). �

Proposition 2.26. Let R be a ring and M be an ideal of R containing an
element x with annl(x) = 0. Then R is a right singular clean ring if and only
if the ring S = {[ a m0 a ] | a ∈ R,m ∈M} is so.

Proof. The proof follows easily from Lemma 2.25. �

In Proposition 2.26 if M = R, then the ring S is isomorphic to R[x]
〈x〉2 . So we

have the following corollary.
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Corollary 2.27. A ring R is right singular clean if and only if the ring R[x]
〈x〉2

is so.

In general for a ring R, the ring

S =




a0 a1 a2 ... an−1
0 a0 a1 ... an−2
0 0 a0 ... an−3
...

...
0 0 0 ... a0

 | ai ∈ R


is isomorphic to the ring R[x]

〈x〉n and

Z(SS) =




a0 a1 a2 ... an−1
0 a0 a1 ... an−2
0 0 a0 ... an−3
...

...
0 0 0 ... a0

 ∈ S | a0 ∈ Z(RR)


.

Therefore, we have the following proposition:

Proposition 2.28. For a ring R the following are equivalent:

(1) The ring R is right singular clean;

(2) The ring R[x]
〈x〉n is right singular clean for some n ∈ N;

(3) The ring R[x]
〈x〉n is right singular clean for every n ∈ N.

Note that if R is a right singular clean ring with no nontrivial idempotents,
then for every element x ∈ R, either x ∈ Z(RR) or (x− 1) ∈ Z(RR).

Theorem 2.29. For a right singular clean ring R, the following are equivalent:

(1) R
Z(RR)

∼= Z2;

(2) Z(RR) is a maximal ideal;
(3) Z(RR) is a prime ideal;
(4) R has no nontrivial idempotents.

Proof. (1)⇒ (2) and (2)⇒ (3) are clear.
(3)⇒ (4) By Corollary 2.4, Z(RR) is a completely prime ideal. If e ∈ Id(R),

then we have e(1− e) = 0 ∈ Z(RR) which implies that e = 0 or e = 1.
(4)⇒ (1) If x /∈ Z(RR), then 1− x ∈ Z(RR). So R

Z(RR)
∼= Z2. �

It is worthwhile to mention that a right singular clean ring with no nontrivial
idempotents is not necessarily local as we saw in Example 2.21.

Proposition 2.30. Let R be a right singular clean ring with no nontrivial
idempotents. Then Z(RR)= {x ∈ R | annr(x) 6= 0}.

Proof. If x ∈ R− Z(RR), then x− 1 ∈ Z(RR) and annr(x− 1)∩ annr(x) = 0.
So annr(x) = 0. �
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We know that in a commutative ring, all nilpotent elements are singular.
Thus every commutative nil clean ring is singular clean. But the converse is
not true, (See Example 2.31 below). However, if R is a right singular clean
ring and Z(RR) is a nil ideal of R (for example, R satisfies ACC on right
annihilators of elements), then R is a nil clean ring. In noncommutative case,
there exist nil clean rings which are neither right nor left singular clean.

Example 2.31. (a) Let R = M2(Z2). Then R is a nil clean ring but it is
neither left nor right singular clean.

(b) Let R =

[
Z
4Z

2Z
4Z

0 Z
4Z

]
. Then Z(RR) = Z(RR) = J(R) is a nilpotent ideal.

By Proposition 2.24, R is right singular clean. So it is both nil clean and left
singular clean.

(c) The ring R =
∏∞
n=1 Z2n is singular clean but not nil clean, since the

element (0, 2, 2, 2, . . .) can not be written as a sum of a nilpotent element and
an idempotent.

3. Uniquely right singular clean rings

In this section we define uniquely (right) singular clean rings and investigate
some of their properties.

Definition 3.1. We call a ring R uniquely right singular clean, if every element
of R can be written uniquely as the sum of a right singular element and an
idempotent. A uniquely left singular clean ring is defined similarly. A ring R
is called uniquely singular clean if it is both uniquely left singular clean and
uniquely right singular clean.

Example 3.2. (a) If R is a right singular clean ring with no nontrivial idem-
potents, then R is uniquely right singular clean. In particular, a local right
singular clean ring is uniquely right singular clean.

(b) The direct product and ring direct summands of uniquely right singular
clean rings are uniquely right singular clean.

Proposition 3.3. A ring R is uniquely right singular clean if and only if R is
abelian and right singular clean.

Proof. Suppose that R is abelian and right singular clean. If x ∈ R and x =
s+ e = s′+ e′, where s, s′ ∈ Z(RR) and e, e′ ∈ Id(R), then e− e′ ∈ Z(RR). So
e(e−e′) = e(1−e′) ∈ Z(RR)∩Id(R). Thus e = ee′. Similarly e′ = ee′ and hence
e = e′ and s = s′. Therefore, R is uniquely right singular clean. Conversely,
let R be uniquely right singular clean and e ∈ Id(R). Then for every r ∈ R,
we have e + er − ere ∈ Id(R) and (ere − er) ∈ Nil(R). So by Corollary 2.4,
(ere−er) ∈ Z(RR). We can write e = e+0 = (e+er−ere)+(ere−er). Hence
ere − er = 0, since R is uniquely right singular clean. Similarly ere − re = 0.
Thus, R is an abelian ring. �
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Corollary 3.4. Let R be a ring and M be an ideal of R containing an element
x with annl(x) = 0. Then R is a uniquely right singular clean ring if and only
if the ring S = {[ a m0 a ] | a ∈ R,m ∈M} is so.

Proof. Clearly S is an abelian ring if and only if R is so. Now, apply Proposi-
tions 2.26 and 3.3. �

It is worthwhile to mention that Proposition 2.28, is valid if we replace right
singular clean by uniquely right singular clean.

Note that a right singular clean ring is not necessarily uniquely right singular
clean.

Example 3.5. By Proposition 2.24, R =

[
Z
4Z

2Z
4Z

0 Z
4Z

]
is a right singular clean ring.

Since the idempotent [ 1 0
0 0 ] is not central, R is not uniquely right singular clean.

Recall that for a ring R and an ideal I of R, idempotents lift uniquely modulo
I, if for every idempotent (x+ I) ∈ R

I , there exists a unique idempotent e ∈ R
such that (x−e) ∈ I. Similar to Propositions 2.3 and 2.8, we have the following
characterisations of uniquely right singular clean rings.

Proposition 3.6. For a ring R, the following are equivalent:

(1) R is uniquely right singular clean;
(2) R

Z(RR) is Boolean and idempotents lift uniquely modulo Z(RR);

(3) Every element of R can be written uniquely as the difference of a right
singular element and an idempotent.

Proposition 3.7. Let R be a uniquely right singular clean ring and e, e′ ∈
Id(R). If e− e′ or e + e′ ∈ Z(RR), then e = e′.

Proof. If e − e′ = s ∈ Z(RR), then e = 0 + e = s + e′. So s = 0 and e = e′.
Now, let e + e′ = s ∈ Z(RR). By Corollary 2.4, we have 2 ∈ Z(RR). Thus
e = s− e′ = 2e− e. So by Proposition 3.6 part (3), s = 2e and e = e′. �

4. Weakly right singular clean rings

The aim of this section is to introduce and study a generalization of the
notion of (right) singular clean rings.

Definition 4.1. We call a ring R weakly right singular clean, if for every x ∈ R,
there exist s ∈ Z(RR) and e ∈ Id(R) such that x = s+ e or x = s− e. Weakly
left singular clean rings are defined similarly. A ring R is called weakly singular
clean, if R is both weakly left singular clean and weakly right singular clean.

Clearly every right singular clean ring is weakly right singular clean, but the
converse is not true. For example, the ring Z3 is weakly singular clean but is
not singular clean.

Proposition 4.2. A ring R is right singular clean if and only if R is weakly
right singular clean and 2 ∈ Z(RR).
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Proof. ⇒) The proof follows from Corollary 2.4.
⇐) If x = s− e, where s ∈ Z(RR)and e ∈ Id(R), then x = (s− 2e) + e. �

Proposition 4.3. If R is a commutative weakly singular clean ring, then every
prime ideal of R is either essential or maximal.

Proof. The proof is similar to the proof of Proposition 2.5. �

Note that the product of weakly right singular clean rings, is not necessarily
weakly right singular clean. For example, let R = Z3 × Z3. This ring is
nonsingular and Id(R) = {(0, 0), (1, 1), (0, 1), (1, 0)}. Thus the element (1, 2)
can be written neither as a sum nor as a difference of a singular element and
an idempotent.

However, we have the following proposition.

Proposition 4.4. If {Rα}α∈A is a family of rings such that one of them is
weakly right singular clean and the others are singular clean, then

∏
α∈ARα is

a weakly right singular clean ring.

Proof. By Proposition 2.8, in right singular clean rings, we can write every
element both as a sum or as a difference of a right singular element and an
idempotent. Now, the proof is easily verified. �

Proposition 4.5. If R = R1 × R2 is a weakly right singular clean ring, then
so is each Ri, for i = 1, 2.

Proof. The proof is similar to the proof of Proposition 2.13. �

Definition 4.6. Let R be a ring and I be an ideal of R. We say that idem-
potents lift weakly modulo I, if for every idempotent (x + I) ∈ R

I , there exists
e ∈ Id(R) such that either (x− e) ∈ I or (x + e) ∈ I.

Proposition 4.7. A ring R is weakly right singular clean if and only if for
every element ā ∈ R

Z(RR) , we have ā = ā2 or ā = −ā2 and idempotents lift

weakly modulo Z(RR).

Proof. ⇐) Let a ∈ R. If ā = ā2, then there exists e ∈ Id(R) such that a− e ∈
Z(RR) or a + e ∈ Z(RR). If ā = −ā2, then −ā ∈ Id( R

Z(RR) ). So for some

e ∈ Id(R), either a− e ∈ Z(RR) or a + e ∈ Z(RR). Thus R is a weakly right
singular clean ring.
⇒) The proof is straightforward. �

Corollary 4.8. Let R be a weakly right singular clean ring. Then

(1) For any ā ∈ R
Z(RR) , ā = ā3. In particular, R

Z(RR) is a commutative

ring.
(2) 6 ∈ Z(RR).
(3) J(R) and Nil(R) are contained in Z(RR).
(4) If x ∈ R and xn ∈ Z(RR) for some n ∈ N, then x ∈ Z(RR).
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(5) Every prime ideal of R containing Z(RR) is both completely prime and
maximal.

(6) If R satisfies ACC on right annihilators of elements, then every prime
ideal of R is maximal.

(7) R is Dedekind-finite.

Proof. (1) Let ā ∈ R
Z(RR) . Then ā2 = ā or ā2 = −ā in both cases we have

ā3 = ā.
(2) In R

Z(RR) , we have 2̄ = 2̄3. Therefore, 6 ∈ Z(RR).

(3) For any x ∈ R, by part (1), x−x3 ∈ Z(RR). If x ∈ J(R) or x ∈ Nil(R),
then 1− x2 ∈ U(R), so that x ∈ Z(RR).

(4) and (5) follow from part (1).
(6) The proof is similar to the proof of part (5) of Corollary 2.4.
(7) The proof is similar to the proof of part (6) of Corollary 2.4. �

Recall that a ring R is called weakly clean, if every element is a sum or a
difference of a unit and an idempotent [1].

Proposition 4.9. Let R be a weakly right singular clean ring. Then Z(RR) =
J(R) if and only if R is a weakly clean ring.

Proof. The proof is similar to the proof of Theorem 2.20. �

Similar to the case of singular clean rings, the polynomial ring, the formal
power series ring, the ring of n×n matrices and the ring of n×n upper (lower)
triangular matrices over any ring R are neither weakly left nor weakly right
singular clean. As in Example 2.7, the ring

[ Z2 Z2

0 Z4

]
is weakly right singular

clean but is not weakly left singular clean.

Proposition 4.10. Let R be a local ring. Then R is weakly right singular
clean if and only if R

Z(RR) is isomorphic to Z2 or Z3.

Proof. The proof is similar to the proof of Proposition 2.15. �

Corollary 4.11. Let p be a prime number and n ∈ N.

(1) If the ring Zpn is weakly singular clean which is not singular clean, then
p = 3.

(2) If Zn is a weakly singular clean ring, then n = 2k×3l for some k, l ≥ 0.

Proposition 4.12. For a weakly right singular clean ring R, the following are
equivalent:

(1) R
Z(RR) is isomorphic to Z2 or Z3;

(2) Z(RR) is a maximal ideal;
(3) Z(RR) is a prime ideal;
(4) R has no nontrivial idempotents.

Proof. The proof is similar to the proof of Theorem 2.29. �
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Recall that a ring R is called weakly nil clean, if for every r ∈ R, we can
write r = n + e or r = n − e for some n ∈ Nil(R) and e ∈ Id(R)[2]. Clearly
every commutative weakly nil clean ring is weakly singular clean. However,
the converse is not true. For example, let R =

∏∞
i=1 Ri, where R1 = Z3 and

Ri = Z2i for i ≥ 2. By Proposition 4.4, R is weakly singular clean. But R is
not weakly nil clean, since the element (0, 2, 2, . . .) can not be written as a sum
or a difference of a nilpotent element and an idempotent.

Note that if R is a weakly right singular clean ring and Z(RR) is a nil ideal
of R, then R is a weakly nil clean ring.

Remark. The results of Corollary 2.16, Theorem 2.22, Propositions 2.23, 2.26
and 2.28 are valid if we replace (right) singular clean by weakly (right) singular
clean.
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